8 research outputs found

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    The vomeronasal organ of the South American armadillo Chaetophractus villosus (Xenarthra, Mammalia): anatomy, histology and ultrastructure

    No full text
    The vomeronasal organ (VNO) is a chemoreceptive structure that has not been extensively studied in the Xenarthran order. Tissue samples from the VNO of the armadillo Chaetophractus villosus were prepared for light and electron microscopy. The VNO is located in the anterior part of the base of the nasal septum. It is tubular in shape, ∼ 18 mm in length and opens in the rostral region of the nasal cavity and with a blind caudal end. Its lumen is lined by sensory (SE) and nonsensory (NSE) epithelium. The SE shows sensory, supporting and basal cells whereas the NSE contains ciliated and nonciliated secretory cells and basal cells. At the ultrastructural level, the sensory cells appear as bipolar neurons with conspicuous microvilli on their free surface. The supporting cells of the SE contain numerous membrane-bound vesicles in their apical regions. A peculiar feature not found in other mammals, is the presence of concentric whorls of RER cisterns frequently observed in their basal expansions. Infiltrating plasma cells can be detected in the SE basal region close to the dorsal junctional area. This region also exhibits an unusual type of basal cell, probably responsible for the generation of new vomeronasal receptor neurons. The ciliated NSE cells exhibit numerous ovoids or irregularly shaped membranous protrusions projecting from the plasma membrane of the cilia. As far as we know, this is the first study reporting the presence of this feature in ciliated NSE cells. The nonciliated cells are characterised by scarce large secretory granules and apical microvilli. The vomeronasal glands are compound-branched tubuloacinar glands with serous acinar cells. Four types of secretory granules are present. The ducts of these glands reach the lumen in the dorsolateral region between the NSE and SE. Hypolemmal nerve terminals were observed contacting secretory cells. Fenestrated and nonfenestrated capillaries constitute the vascular supply to these glands. Plasma cells, intimately associated with acinar cells, were frequently observed

    Ultrastructural characterisation of the olfactory mucosa of the armadillo Dasypus hybridus (Dasypodidae, Xenarthra)

    Get PDF
    The ultrastructure of the olfactory mucosa of the armadillo Dasypus hybridus was studied. A comparison with the olfactory mucosa of another armadillo (Chaetophractus villosus) was made. The olfactory mucosa of D. hybridus shows many features which are similar to those of other mammals. Interestingly, it differs from the olfactory mucosa of the armadillo C. villosus. A suggestion is made that these differences may be due to differences in the digging habits of these species. In Dasypus, the supporting cells (SCs) showed dense vacuoles, multivesicular bodies and lysosome-like bodies probably related with the endocytotic system. The SCs show a dense network of SER presumably associated with xenobiotic mechanisms. The olfactory receptor neurons exhibit lysosome-like bodies and multivesicular bodies in their perikarya. These organelles suggest the presence of an endocytotic system. Duct cells of Bowman's glands exhibit secretory activities. Bowman's glands are compound-branched tubulo-acinar mixed glands with merocrine secretory mechanisms

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population
    corecore