28 research outputs found

    Confirming Accretion in Mylupi with UV-HST Observations

    Get PDF
    The mass accretion rate is a crucial parameter for the study of the evolution of accretion discs around young low-mass stellar and substellar objects (YSOs), because it sets important constraints for disc evolution models and disc clearing mechanisms, and is a key quantity for the studies of Pre-Main Sequence (PMS) stellar evolution and planet formation. Low-mass PMS stars with transitional discs accreting at very low rates are likely in the final stages of inner disc evolution, and probably have already formed protoplanets. Hence, identifying and investigating such low accretors may help understanding planet formation. However, measurements of low accretion rates are challenging. In this work, we use UV-HST spectra to unambiguously confirm and investigate the accretion rate in the transitional YSO MYLup, an object previously classified as a weak or non-accretor based on optical spectra. The puzzle here is that the HST data provide a Macc value an orde

    Thermorresponsive magnetic nanoparticles as target drug delivery for cancer treatment

    Get PDF
    In this research, temperature sensitive microgels with magnetic core for controlled release of 5-fluoruracil was synthesized. Magnetic nanoparticles (Fe3O4) were prepared by coprecipitation method and the surface was functionalized by acrylic acid. Polymer poly(N-isopropylacrylamide) (PNIPAM) were grown by free radical polymerization in presence of cross-liker and initiator. The size of the polymer was manipulated by changing the mole percent of the crosslinker and evaluated for their morphology (TEM), particle size, zeta potential, loading efficiency, drug content and drug release. Furthermore, microgels were tagged with FITC, a fluorochrome which could be applied for cell imaging. Cytotoxicity studies revealed that the microgels were not toxic. These complex nanoparticles (Fe3O4/pNIPAM/FITC/5-Fu) appear to be a great promise to be used in controlled drug delivery and tumor targeting.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Synthesis of New Analogues of the Bengamides to encapsulate in magnetic nanoparticles

    Get PDF
    The development and identification of new antitumoral has become a research area of great interest and maximum priority due to secondary effects of current antitumoral and the appearance of tumours resistant to these agents. Marine sponges corresponding to the Jaspidae family have proved to be a prolific source of bioactive natural products. Among these, the Bengamides have showed an important biological profile, including antitumor, antibiotic and anthelmintic properties. Due to the interest of theses natural products, we describe a study directed towards the total synthesis of this class of compounds. Then we encapsulate Bengamides in temperature sensitive microgels with a magnetic core. Magnetic nanoparticles (Fe3O 4) were prepared by coprecipitation method and the surface was functionalized by acrylic acid. Polymer poly(N-isopropylacrylamide) (PNIPAM) were grown by free radical polymerization in presence of cross-liker and initiator.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Spectro astrometry of the Hα emission of T Cha

    Get PDF
    For this project we present a spectro-astrometric study of the Hα emission from T Cha, a young stellar object with a transitional disk. The aim is to explore the possibility of detecting a substellar companion using spectro-astrometry. While no spectro-astrometric signal was found in the Hα line it is planned that the next step will be to combine the spectro-astrometric results with estimates of the mass accretion rate for T Cha to put an upper limit on the mass accretion rate onto any companion

    Accretion and outflows in young stars with CUBES

    Get PDF
    The science case on studies of accretion and outflows in low-mass (<1.5M⊙) young stellar objects (YSOs) with the new CUBES instrument is presented. We show the need for a high-sensitivity, near-ultraviolet (NUV) spectrograph like CUBES, with a resolving power at least four times that of X-Shooter and combined with UVES via a fibrelink for simultaneous observations. Simulations with the CUBES exposure time calculator and the end-to-end software show that a significant gain in signal-to-noise can be achieved compared to current instruments, for both the spectral continuum and emission lines, including for relatively embedded YSOs. Our simulations also show that the low-resolution mode of CUBES will be able to observe much fainter YSOs (V ∼ 22 mag) in the NUV than we can today, allowing us extend studies to YSOs with background-limited magnitudes. The performance of CUBES in terms of sensitivity in the NUV will provide important new insights into the evolution of circumstellar disks, by studying the accretion, jets/winds and photo-evaporation processes, down to the low-mass brown dwarf regime. CUBES will also open-up new science as it will be able to observe targets that are several magnitudes fainter than those reachable with current instruments, facilitating studies of YSOs at distances of ∼ kpc scale. This means a step-change in the field of low-mass star formation, as it will be possible to expand the science case from relatively local star-forming regions to a large swathe of distances within the Milky Way

    Investigating Star-disk Interactions During Late-stage Circusmtellar Disk Evolution in the Nearby Pre-MS Stars T Cha and TWA 30

    Get PDF
    We investigate, via contemporaneous X-ray and optical/IR observations, the nearby, pre-main sequence star/disk systems T Chamaeleontis (T Cha; D ~ 110 pc, age 3-5 Myr) and TWA 30A and 30B (D ~ 40 pc; age ~ 8 Myr). All three of these systems present opportunities to probe pre-main sequence (pre-MS) star-disk interactions during late-stage circumstellar disk evolution. The classical T Tauri star T Cha is the closest known example of a highly inclined, actively accreting, solar-mass star/disk system; furthermore, T Cha may be orbited by a low-mass companion or massive planet that has cleared an inner hole in its disk. We analyze near-simultaneous Chandra high-resolution X-ray and optical H-alpha spectroscopy observations of T Cha and find a correlation between X-ray and optical extinction resulting from variable photospheric obscuration from a disk warp/clump. We search for signatures of accretion and infer the X-ray absorbing properties of the T Cha circumstellar disk.We also present contemporaneous XMM-Newton X-ray and optical/IR spectroscopic observations of the nearby, actively accreting, very low-mass (mid-M) pre-MS star/disk/jet systems TWA 30A and 30B. Like T Cha, each component of this wide binary is viewed through a nearly edge-on circumstellar disk. We investigate potential X-ray accretion signatures, and compare the levels of magnetic activity in TWA 30A and 30B to those of other nearby, low-mass pre-MS stars near the H-burning limit. Both TWA 30A and 30B display large near-IR variability, suggestive of (respectively) variable obscuration of the stellar photosphere and a possible disk-rim warp. We detect only TWA 30A in X-rays and, similar to the case of T Cha, find a correlation between optical/IR and X-ray extinction associated with variable photospheric obscuration. The proximity and highly-inclined viewing geometries of the TWA 30 pair and T Cha, combined with contemporaneous optical/IR and X-ray observations, afford a unique opportunity to investigate the composition of late-stage circumstellar disks orbiting pre-MS stars

    KMOS study of the mass accretion rate from Class I to Class II in NGC 1333

    Get PDF
    Context. The mass accretion rate (\Mdot;acc) is the fundamental parameter to understand the process of mass assembly that results in the formation of a low-mass star. This parameter has been largely studied in Classical T Tauri stars in star-forming regions with ages of ∼1 − 10 Myr. However, little is known about the accretion properties of young stellar objects (YSOs) in younger regions and early stages of star formation, such as in the Class 0/I phases. Aims: We present new near-infrared spectra of 17 Class I/Flat and 35 Class II sources located in the young ( Methods: For the Class II sources in our sample, we measured the stellar parameters (SpT, AV, and L⋆) through a comparison of the IR spectra with a grid of non-accreting Class III stellar templates. We then computed the accretion luminosity by using the known correlation between Lacc and the luminosity of HI lines (Paβ and Brγ). For the Class I sample, where the presence of a large IR excess makes it impossible to use the same spectral typing method, we applied a procedure that allowed us to measure the stellar and accretion luminosity in a self-consistent way. Mass accretion rates \Mdot;acc were then measured once masses and radii were estimated adopting suitable evolutionary tracks. Results: The NGC 1333 Class II sources of our sample have Lacc ∼ 10−4 − 1 L⊙ and \Mdot;acc ∼ 10−11 − 10−7 M⊙ yr−1. We find a correlation between accretion and stellar luminosity in the form of log Lacc = (1.5 ± 0.2)log L⋆ + ( − 1.0 ± 0.1), and a correlation between the mass accretion rate and stellar mass in the form of log \Mdot;acc = (2.6 ± 0.9) log M⋆ + (−7.3 ± 0.7). Both correlations are compatible within the errors with the older Lupus star-forming region, while only the latter is consistent with results from Chamaeleon I. The Class I sample shows larger accretion luminosities (∼10−2 − 102 L⊙) and mass accretion rates (∼10−9 − 10−6 M⊙ yr−1) with respect to the Class II stars of the same cloud. However, the derived mass accretion rates are not sufficiently high to build up the inferred stellar masses, assuming steady accretion during the Class I lifetime. This suggests that the sources are not in their main accretion phase and that most of their mass has already been accumulated during a previous stage and/or that the accretion is an episodic phenomenon. We show that some of the targets originally classified as Class I through Spitzer photometry are in fact evolved or low accreting objects. This evidence can have implications for the estimated protostellar phase lifetimes. Conclusions: The accretion rates of our sample are larger in more embedded and early stage YSOs. Further observations of larger samples in young star-forming regions are needed to determine if this is a general result. In addition, we highlight the importance of spectroscopic surveys of YSOs to confirm their classification and perform a more correct estimate of their lifetime. Reduced spectra of the sources described in Tables 1 and C.1 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/650/A43 Based on observations collected at the European Southern Observatory under ESO programme 0102.C-0679A

    Hunting for brown dwarf binaries with X-Shooter

    Get PDF
    The refinement of the brown dwarf binary fraction may contribute to the understanding of the substellar formation mechanisms. Peculiar brown dwarf spectra or discrepancy between optical and near-infrared spectral type classification of brown dwarfs may indicate unresolved brown dwarf binary systems. We obtained medium-resolution spectra of 22 brown dwarfs of potential binary candidates using X-Shooter at the VLT. We aimed to select brown dwarf binary candidates. We also tested whether BT-Settl 2014 atmospheric models reproduce the physics in the atmospheres of these objects. To find different spectral type spectral binaries, we used spectral indices and we compared the selected candidates to single spectra and composition of two single spectra from libraries, to try to reproduce our X-Shooter spectra. We also created artificial binaries within the same spectral class, and we tried to find them using the same method as for brown dwarf binaries with different spectral types. We compared our spectra to the BT-Settl models 2014. We selected six possible candidates to be combination of L plus T brown dwarfs. All candidates, except one, are better reproduced by a combination of two single brown dwarf spectra than by a single spectrum. The one-sided F-test discarded this object as a binary candidate. We found that we are not able to find the artificial binaries with components of the same spectral type using the same method used for L plus T brown dwarfs. Best matches to models gave a range of effective temperatures between 950 K and 1900 K, a range of gravities between 4.0 and 5.5. Some best matches corresponded to supersolar metallicity

    X-Shooter Medium Resolution Brown Dwarfs Library

    Get PDF
    } We obtain medium-resolution spectra in the optical (550-1000 nm, R̃5400) and the near-infrared (1000-2500 nm, R̃3300) using the Wideband ultraviolet-infrared single target spectrograph (X-Shooter) at the Very Large Telescope (VLT). Our sample is compound of 22 brown dwarfs binary candidates with spectral types between L1 and T7. We aim to empirically confirm or refute the binarity of our candidates, comparing them to spectral templates and to other brown dwarfs in a color-magnitude diagram, for targets that have published parallaxes. } We use X-shooter at the VLT to obtain medium resolution spectra of the targets. We develop a slightly different analysis depending of the type of binaries we search for. To find L plus T brown dwarf binaries candidates, we comput spectral indices to select L-brown dwarfs plus T-brown dwarf binaries, and then we compare them to single and composite template spectra. To find potential L plus L or T plus T brown dwarf binaries, we first simulate their spectra creating synthetic binaries using combination of single template spectra. Then we compare them to our set of spectral libraries and composite of them to test if our method is able to find these binaries. } Using spectral indices, we select four possible candidates to be combination of L plus T brown dwarfs: SIMP 0136 662+0933473, 2MASSI J0423485-041403 (T0, known binary), DENIS-P J0255.0-4700 and 2MASS J13411160-3052505 We compare these candidates to single brown dwarf template spectra and combinations of them, and we select the best matches. All candidates beside SIMP 0136 662+0933473 have decent matches to composite of two single template spectra. DENIS-P J0255.0-4700 have also good agreements to several late L and early T single template spectra. To find L plus L or T plus T brown dwarfs candidates, test the comparison to templates method use before to find L plus T brown dwarf binaries. The test consist on finding synthetic L plus L and T plus T binaries by comparing with spectral templates. We conclude that we cannot find L plus L and T plus T binaries using comparing to single and composite spectral templates, because the main difference between different L or T spectral types is just the spectral energy distribution.} Optical and near infrared spectra report in this paper will serve as templates for future studies in any of these wavelengths. In the near future, Gaia satellite will release high precision parallaxes of more than one billion of objects in the Milky Way, including hundred of brown dwarfs. These parallaxes will allow us to detect the overluminosity of brown dwarf binaries.} <P /
    corecore