5,391 research outputs found

    Absorção via foliar de aminoácidos em mudas de videira cv. Thompson seedless em cultivo hidropônico.

    Get PDF
    Este trabalho teve por objetivo quantificar o teor de N proveniente dos aminoácidos, absorvidos via foliar, em mudas de videira da cultivar Thompson Seedless

    Deep shower interpretation of the cosmic ray events observed in excess of the Greisen-Zatsepin-Kuzmin energy

    Get PDF
    We consider the possibility that the ultra-high-energy cosmic ray flux has a small component of exotic particles which create showers much deeper in the atmosphere than ordinary hadronic primaries. It is shown that applying the conventional AGASA/HiRes/Auger data analysis procedures to such exotic events results in large systematic biases in the energy spectrum measurement. SubGZK exotic showers may be mis-reconstructed with much higher energies and mimick superGZK events. Alternatively, superGZK exotic showers may elude detection by conventional fluorescence analysis techniques.Comment: 22 pages, 5 figure

    Neutrino Telescopes' Sensitivity to Dark Matter

    Full text link
    The nature of the dark matter of the Universe is yet unknown and most likely is connected with new physics. The search for its composition is under way through direct and indirect detection. Fundamental physical aspects such as energy threshold, geometry and location are taken into account to investigate proposed neutrino telescopes of km^3 volume sensitivities to dark matter. These sensitivities are just sufficient to test a few WIMP scenarios. Telescopes of km^3 volume, such as IceCube, can definitely discover or exclude superheavy (M > 10^10 GeV) Strong Interacting Massive Particles (Simpzillas). Smaller neutrino telescopes such as ANTARES, AMANDA-II and NESTOR can probe a large region of the Simpzilla parameter space.Comment: 28 pages, 9 figure

    Fluctuating Dimension in a Discrete Model for Quantum Gravity Based on the Spectral Principle

    Full text link
    The spectral principle of Connes and Chamseddine is used as a starting point to define a discrete model for Euclidean quantum gravity. Instead of summing over ordinary geometries, we consider the sum over generalized geometries where topology, metric and dimension can fluctuate. The model describes the geometry of spaces with a countable number nn of points, and is related to the Gaussian unitary ensemble of Hermitian matrices. We show that this simple model has two phases. The expectation value ,theaveragenumberofpointsintheuniverse,isfiniteinonephaseanddivergesintheother.Wecomputethecriticalpointaswellasthecriticalexponentof, the average number of points in the universe, is finite in one phase and diverges in the other. We compute the critical point as well as the critical exponent of . Moreover, the space-time dimension δ\delta is a dynamical observable in our model, and plays the role of an order parameter. The computation of is discussed and an upper bound is found, <2 < 2.Comment: 10 pages, no figures. Third version: This new version emphasizes the spectral principle rather than the spectral action. Title has been changed accordingly. We also reformulated the computation of the dimension, and added a new reference. To appear in Physical Review Letter

    Identification and selection rules of the spin-wave eigen-modes in a normally magnetized nano-pillar

    Get PDF
    We report on a spectroscopic study of the spin-wave eigen-modes inside an individual normally magnetized two layers circular nano-pillar (Permalloy|Copper|Permalloy) by means of a Magnetic Resonance Force Microscope (MRFM). We demonstrate that the observed spin-wave spectrum critically depends on the method of excitation. While the spatially uniform radio-frequency (RF) magnetic field excites only the axially symmetric modes having azimuthal index =0\ell=0, the RF current flowing through the nano-pillar, creating a circular RF Oersted field, excites only the modes having azimuthal index =+1\ell=+1. Breaking the axial symmetry of the nano-pillar, either by tilting the bias magnetic field or by making the pillar shape elliptical, mixes different \ell-index symmetries, which can be excited simultaneously by the RF current. Experimental spectra are compared to theoretical prediction using both analytical and numerical calculations. An analysis of the influence of the static and dynamic dipolar coupling between the nano-pillar magnetic layers on the mode spectrum is performed

    Towards Spinfoam Cosmology

    Get PDF
    We compute the transition amplitude between coherent quantum-states of geometry peaked on homogeneous isotropic metrics. We use the holomorphic representations of loop quantum gravity and the Kaminski-Kisielowski-Lewandowski generalization of the new vertex, and work at first order in the vertex expansion, second order in the graph (multipole) expansion, and first order in 1/volume. We show that the resulting amplitude is in the kernel of a differential operator whose classical limit is the canonical hamiltonian of a Friedmann-Robertson-Walker cosmology. This result is an indication that the dynamics of loop quantum gravity defined by the new vertex yields the Friedmann equation in the appropriate limit.Comment: 8 page

    Atributos químicos de um Cambissolo háplico influenciados pela aplicação de resíduo de reciclagem de papel no solo.

    Get PDF
    Nesse sentido, o objetivo desse trabalho foi avaliar o efeito de resíduo de reciclagem de papel, aplicado em diferentes doses em Cambissolo Háplico com pH muito baixo, sobre alguns atributos químicos do solo. O resíduo de reciclagem de papel corrigiu a acidez do solo, bem como aumentou os teores de cálcio e fósforo, todavia reduziu os teores de manganês e incrementou os teores de sódio, em um Cambissolo Háplico muito ácido
    corecore