3,396 research outputs found

    Influence of pH on mechanical relaxations in high solids lm-pectin preparations

    Get PDF
    The influence of pH on the mechanical relaxation of LM-pectin in the presence of co-solute has been investigated by means of differential scanning calorimetry, ζ-potential measurements and small deformation dynamic oscillation in shear. pH was found to affect the conformational properties of the polyelectrolyte altering its structural behaviour. Cooling scans in the vicinity of the glass transition region revealed a remarkable change in the viscoelastic functions as the polyelectrolyte rearranges from extended (neutral pH) to compact conformations (acidic pH). This conformational rearrangement was experimentally observed to result in early vitrification at neutral pH values where dissociation of galacturonic acid residues takes place. Time-temperature superposition of the mechanical shift factors and theoretical modeling utilizing WLF kinetics confirmed the accelerated kinetics of glass transition in the extended pectin conformation at neutral pH. Determination of the relaxation spectra of the samples using spectral analysis of the master curves revealed that the relaxation of macromolecules occurs within ~0.1 s regardless of the solvent pH

    Analysis of segmentation ontology reveals the similarities and differences in connectivity onto L2/3 neurons in mouse V1

    Get PDF
    Quantitatively comparing brain-wide connectivity of different types of neuron is of vital importance in understanding the function of the mammalian cortex. Here we have designed an analytical approach to examine and compare datasets from hierarchical segmentation ontologies, and applied it to long-range presynaptic connectivity onto excitatory and inhibitory neurons, mainly located in layer 2/3 (L2/3), of mouse primary visual cortex (V1). We find that the origins of long-range connections onto these two general cell classes-as well as their proportions-are quite similar, in contrast to the inputs on to a cell type in L6. These anatomical data suggest that distal inputs received by the general excitatory and inhibitory classes of neuron in L2/3 overlap considerably

    Are p.I148T, p.R74W and p.D1270N cystic fibrosis causing mutations ?

    Get PDF
    BACKGROUND: To contribute further to the classification of three CFTR amino acid changes (p.I148T, p.R74W and p.D1270N) either as CF or CBAVD-causing mutations or as neutral variations. METHODS: The CFTR genes from individuals who carried at least one of these changes were extensively scanned by a well established DGGE assay followed by direct sequencing and familial segregation analysis of mutations and polymorphisms. RESULTS: Four CF patients (out of 1238) originally identified as carrying the p.I148T mutation in trans with a CF mutation had a second mutation (c.3199del6 or a novel mutation c.3395insA) on the p.I148T allele. We demonstrate here that the deletion c.3199del6 can also be associated with CF without p.I148T. Three CBAVD patients originally identified with the complex allele p.R74W-p.D1270N were also carrying p.V201M on this allele, by contrast with non CF or asymptomatic individuals including the mother of a CF child, who were carrying p.R74W-p.D1270N alone. CONCLUSION: These findings question p.I148T or p.R74W-p.D1270N as causing by themselves CF or CBAVD and emphazises the necessity to perform a complete scanning of CFTR genes and to assign the parental alleles when novel missense mutations are identified

    Plasma phosphorylated tau 217 and phosphorylated tau 181 as biomarkers in Alzheimer's disease and frontotemporal lobar degeneration: a retrospective diagnostic performance study

    Get PDF
    Background: Plasma tau phosphorylated at threonine 217 (p-tau217) and plasma tau phosphorylated at threonine 181 (p-tau181) are associated with Alzheimer's disease tau pathology. We compared the diagnostic value of both biomarkers in cognitively unimpaired participants and patients with a clinical diagnosis of mild cognitive impairment, Alzheimer's disease syndromes, or frontotemporal lobar degeneration (FTLD) syndromes. / Methods: In this retrospective multicohort diagnostic performance study, we analysed plasma samples, obtained from patients aged 18–99 years old who had been diagnosed with Alzheimer's disease syndromes (Alzheimer's disease dementia, logopenic variant primary progressive aphasia, or posterior cortical atrophy), FTLD syndromes (corticobasal syndrome, progressive supranuclear palsy, behavioural variant frontotemporal dementia, non-fluent variant primary progressive aphasia, or semantic variant primary progressive aphasia), or mild cognitive impairment; the participants were from the University of California San Francisco (UCSF) Memory and Aging Center, San Francisco, CA, USA, and the Advancing Research and Treatment for Frontotemporal Lobar Degeneration Consortium (ARTFL; 17 sites in the USA and two in Canada). Participants from both cohorts were carefully characterised, including assessments of CSF p-tau181, amyloid-PET or tau-PET (or both), and clinical and cognitive evaluations. Plasma p-tau181 and p-tau217 were measured using electrochemiluminescence-based assays, which differed only in the biotinylated antibody epitope specificity. Receiver operating characteristic analyses were used to determine diagnostic accuracy of both plasma markers using clinical diagnosis, neuropathological findings, and amyloid-PET and tau-PET measures as gold standards. Difference between two area under the curve (AUC) analyses were tested with the Delong test. / Findings: Data were collected from 593 participants (443 from UCSF and 150 from ARTFL, mean age 64 years [SD 13], 294 [50%] women) between July 1 and Nov 30, 2020. Plasma p-tau217 and p-tau181 were correlated (r=0·90, p<0·0001). Both p-tau217 and p-tau181 concentrations were increased in people with Alzheimer's disease syndromes (n=75, mean age 65 years [SD 10]) relative to cognitively unimpaired controls (n=118, mean age 61 years [SD 18]; AUC=0·98 [95% CI 0·95–1·00] for p-tau217, AUC=0·97 [0·94–0·99] for p-tau181; pdiff=0·31) and in pathology-confirmed Alzheimer's disease (n=15, mean age 73 years [SD 12]) versus pathologically confirmed FTLD (n=68, mean age 67 years [SD 8]; AUC=0·96 [0·92–1·00] for p-tau217, AUC=0·91 [0·82–1·00] for p-tau181; pdiff=0·22). P-tau217 outperformed p-tau181 in differentiating patients with Alzheimer's disease syndromes (n=75) from those with FTLD syndromes (n=274, mean age 67 years [SD 9]; AUC=0·93 [0·91–0·96] for p-tau217, AUC=0·91 [0·88–0·94] for p-tau181; pdiff=0·01). P-tau217 was a stronger indicator of amyloid-PET positivity (n=146, AUC=0·91 [0·88–0·94]) than was p-tau181 (n=214, AUC=0·89 [0·86–0·93]; pdiff=0·049). Tau-PET binding in the temporal cortex was more strongly associated with p-tau217 than p-tau181 (r=0·80 vs r=0·72; pdiff<0·0001, n=230). / Interpretation: Both p-tau217 and p-tau181 had excellent diagnostic performance for differentiating patients with Alzheimer's disease syndromes from other neurodegenerative disorders. There was some evidence in favour of p-tau217 compared with p-tau181 for differential diagnosis of Alzheimer's disease syndromes versus FTLD syndromes, as an indication of amyloid-PET-positivity, and for stronger correlations with tau-PET signal. Pending replication in independent, diverse, and older cohorts, plasma p-tau217 and p-tau181 could be useful screening tools to identify individuals with underlying amyloid and Alzheimer's disease tau pathology. / Funding: US National Institutes of Health, State of California Department of Health Services, Rainwater Charitable Foundation, Michael J Fox foundation, Association for Frontotemporal Degeneration, Alzheimer's Association

    The female menstrual cycle does not influence testosterone concentrations in male partners

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The time of ovulation has since long been believed to be concealed to male heterosexual partners. Recent studies have, however, called for revision of this notion. For example, male testosterone concentrations have been shown to increase in response to olfactory ovulation cues, which could be biologically relevant by increasing sexual drive and aggressiveness. However, this phenomenon has not previously been investigated in real-life human settings. We therefore thought it of interest to test the hypothesis that males' salivary testosterone concentrations are influenced by phases of their female partners' menstrual cycle; expecting a testosterone peak at ovulation.</p> <p>Methods</p> <p>Thirty young, healthy, heterosexual couples were recruited. During the course of 30-40 days, the women registered menses and ovulation, while the men registered sexual activity, physical exercise, alcohol intake and illness (confounders), and obtained daily saliva samples for testosterone measurements. All data, including the registered confounders, were subjected to multiple regression analysis.</p> <p>Results</p> <p>In contrast to the hypothesis, the ovulation did not affect the testosterone levels, and the resulting testosterone profile during the menstrual cycle was on the average flat. The specific main hypothesis, that male testosterone levels on the day of ovulation would be higher than day 4 of the cycle, was clearly contradicted by a type II error(β)-analysis (< 14.3% difference in normalized testosterone concentration; β = 0.05).</p> <p>Conclusions</p> <p>Even though an ovulation-related salivary testosterone peak was observed in individual cases, no significant effect was found on a group level.</p

    Diagnostic value of plasma phosphorylated tau181 in Alzheimer's disease and frontotemporal lobar degeneration

    Get PDF
    With the potential development of new disease-modifying Alzheimer’s disease (AD) therapies, simple, widely available screening tests are needed to identify which individuals, who are experiencing symptoms of cognitive or behavioral decline, should be further evaluated for initiation of treatment. A blood-based test for AD would be a less invasive and less expensive screening tool than the currently approved cerebrospinal fluid or amyloid β positron emission tomography (PET) diagnostic tests. We examined whether plasma tau phosphorylated at residue 181 (pTau181) could differentiate between clinically diagnosed or autopsy-confirmed AD and frontotemporal lobar degeneration. Plasma pTau181 concentrations were increased by 3.5-fold in AD compared to controls and differentiated AD from both clinically diagnosed (receiver operating characteristic area under the curve of 0.894) and autopsy-confirmed frontotemporal lobar degeneration (area under the curve of 0.878). Plasma pTau181 identified individuals who were amyloid β-PET-positive regardless of clinical diagnosis and correlated with cortical tau protein deposition measured by 18F-flortaucipir PET. Plasma pTau181 may be useful to screen for tau pathology associated with AD
    corecore