544 research outputs found

    Ferric iron geometry and coordination during hydrolysis and ferrihydrite precipitation

    Get PDF
    Definitive structural characterisation of ferrihydrite has challenged scientists primarily due to its nanosized particles and inherent long-range structural disorder which challenges analytical methodology (and modelling) typically employed to determine the structure of minerals. Here we report on the application of a synchrotron quick-scanning X-ray absorption spectroscopy (XAS) approach, which allows the collection of Extended X-ray Absorption Fine Structure (EXAFS) spectral data to k = 15 Å-1 in < 1 minute, to obtain unparalleled iron Kedge data on the hydrolysis of FeIII(H2O)6 and ferrihydrite precipitation. Modelling of the pre-edge and EXAFS data: 1) supports theoretical studies which have suggested the existence of a monomeric penta-coordinated FeIII hydrolysis species and; 2) corroborates recently proposed structural models of ferrihydrite that contain tetrahedral FeIII. Modelling results indicate that ferrihydrite consists of 15 to 25 % tetrahedral FeIII and suggest that this geometry must be included in any comprehensive structural model of ferrihydrite and, furthermore, should be considered when evaluating the reactivity, stability and other structure-property relationships of this mineral. © The Authors

    Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms

    Get PDF
    Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Although 58 genomic regions have been associated with CAD thus far, most of the heritability is unexplained, indicating that additional susceptibility loci await identification. An efficient discovery strategy may be larger-scale evaluation of promising associations suggested by genome-wide association studies (GWAS). Hence, we genotyped 56,309 participants using a targeted gene array derived from earlier GWAS results and performed meta-analysis of results with 194,427 participants previously genotyped, totaling 88,192 CAD cases and 162,544 controls. We identified 25 new SNP-CAD associations (P &lt; 5 × 10(-8), in fixed-effects meta-analysis) from 15 genomic regions, including SNPs in or near genes involved in cellular adhesion, leukocyte migration and atherosclerosis (PECAM1, rs1867624), coagulation and inflammation (PROCR, rs867186 (p.Ser219Gly)) and vascular smooth muscle cell differentiation (LMOD1, rs2820315). Correlation of these regions with cell-type-specific gene expression and plasma protein levels sheds light on potential disease mechanisms

    A tutorial on pilot studies: the what, why and how

    Get PDF
    Pilot studies for phase III trials - which are comparative randomized trials designed to provide preliminary evidence on the clinical efficacy of a drug or intervention - are routinely performed in many clinical areas. Also commonly know as "feasibility" or "vanguard" studies, they are designed to assess the safety of treatment or interventions; to assess recruitment potential; to assess the feasibility of international collaboration or coordination for multicentre trials; to increase clinical experience with the study medication or intervention for the phase III trials. They are the best way to assess feasibility of a large, expensive full-scale study, and in fact are an almost essential pre-requisite. Conducting a pilot prior to the main study can enhance the likelihood of success of the main study and potentially help to avoid doomed main studies. The objective of this paper is to provide a detailed examination of the key aspects of pilot studies for phase III trials including: 1) the general reasons for conducting a pilot study; 2) the relationships between pilot studies, proof-of-concept studies, and adaptive designs; 3) the challenges of and misconceptions about pilot studies; 4) the criteria for evaluating the success of a pilot study; 5) frequently asked questions about pilot studies; 7) some ethical aspects related to pilot studies; and 8) some suggestions on how to report the results of pilot investigations using the CONSORT format

    How should we store avian faecal samples for microbiota analyses? Comparing efficacy and cost-effectiveness

    Get PDF
    Analyses of bacterial DNA in faecal samples are becoming ever more common, yet we still do not know much about bird microbiomes. These challenges partly lie in the unique chemical nature of their faeces, and in the choice of sample storage method, which affects DNA preservation and the resulting microbiome composition. However, there is little information available on how best to preserve avian faeces for microbial analyses. This study evaluates five widely used methods for preserving nucleic acids and inferring microbiota profiles, for their relative efficacy, cost, and practicality. We tested the five methods (in-situ bead-beating with a TerraLyzer instrument, silica-bead desiccation, ethanol, refrigeration and RNAlater buffer) on 50 fresh faecal samples collected from captive House sparrows (Passer domesticus). In line with other studies, we find that different storage methods lead to distinct bacterial profiles. Storage method had a large effect on community composition and the relative abundance of dominant phyla such as Firmicutes and Proteobacteria, with the most significant changes observed for refrigerated samples. Furthermore, differences in the abundance of aerobic or facultatively aerobic taxa, particularly in refrigerated samples and those stored in ethanol, puts limits on comparisons of bacterial communities across different storage methods. Finally, the methods that did not include in-situ bead-beating did not recover comparable levels of microbiota to the samples that were immediately processed and preserved using a TerraLyzer device. However, this method is also less practical and more expensive under field work circumstances. Our study is the most comprehensive analysis to date on how storage conditions affect subsequent molecular assays applied to avian faeces and provides guidance on cost and practicality of methods under field conditions

    Balancing economic and ecological functions in smallholder and industrial oil palm plantations

    Get PDF
    The expansion of the oil palm industry in Indonesia has improved livelihoods in rural communities, but comes at the cost of biodiversity and ecosystem degradation. Here, we investigated ways to balance ecological and economic outcomes of oil palm cultivation. We compared a wide range of production systems, including smallholder plantations, industrialized company estates, estates with improved agronomic management, and estates with native tree enrichment. Across all management types, we assessed multiple indicators of biodiversity, ecosystem functions, management, and landscape structure to identify factors that facilitate economic-ecological win-wins, using palm yields as measure of economic performance. Although, we found that yields in industrialized estates were, on average, twice as high as those in smallholder plantations, ecological indicators displayed substantial variability across systems, regardless of yield variations, highlighting potential for economic-ecological win-wins. Reducing management intensity (e.g., mechanical weeding instead of herbicide application) did not lower yields but improved ecological outcomes at moderate costs, making it a potential measure for balancing economic and ecological demands. Additionally, maintaining forest cover in the landscape generally enhanced local biodiversity and ecosystem functioning within plantations. Enriching plantations with native trees is also a promising strategy to increase ecological value without reducing productivity. Overall, we recommend closing yield gaps in smallholder cultivation through careful intensification, whereas conventional plantations could reduce management intensity without sacrificing yield. Our study highlights various pathways to reconcile the economics and ecology of palm oil production and identifies management practices for a more sustainable future of oil palm cultivation.</p

    Genetic modifiers in rare disorders: the case of fragile X syndrome.

    Get PDF
    Methods employed in genome-wide association studies are not feasible ways to explore genotype-phenotype associations in rare disorders due to limited statistical power. An alternative approach is to examine relationships among specific single nucleotide polymorphisms (SNPs), selected a priori, and behavioural characteristics. Here, we adopt this strategy to examine relationships between three SNPs (5-HTTLPR, MAOA, COMT) and specific clinically-relevant behaviours that are phenotypic of fragile X syndrome (FXS) but vary in severity and frequency across individuals. Sixty-four males with FXS participated in the current study. Data from standardised informant measures of challenging behaviour (defined as physical aggression, property destruction, stereotyped behaviour, and self-injury), autism symptomatology, attention-deficit-hyperactivity-disorder characteristics, repetitive behaviour and mood/interest and pleasure were compared between each SNP genotype. No association was observed between behavioural characteristics and either 5-HTTLPR (serotonin) or MAOA (monoamine oxidase) genotypes. However, compared to the COMT (dopamine) AG and GG genotypes, the AA genotype was associated with greater interest and pleasure in the environment, and with reduced risk for property destruction, stereotyped behaviour and compulsive behaviour. The results suggest that common genetic variation in the COMT genotype affecting dopamine levels in the brain may contribute to the variability of challenging and repetitive behaviours and interest and pleasure in this population. This study identifies a role for additional genetic risk in understanding the neural and genetic mechanisms contributing to phenotypic variability in neurodevelopmental disorders, and highlights the merit of investigating SNPs that are selected a priori on a theoretical basis in rare populations

    A point mutation in cpsE renders Streptococcus pneumoniae nonencapsulated and enhances its growth, adherence and competence.

    Get PDF
    BACKGROUND: The polysaccharide capsule is a major virulence factor of the important human pathogen Streptococcus pneumoniae. However, S. pneumoniae strains lacking capsule do occur. RESULTS: Here, we report a nasopharyngeal isolate of Streptococcus pneumoniae composed of a mixture of two phenotypes; one encapsulated (serotype 18C) and the other nonencapsulated, determined by serotyping, electron microscopy and fluorescence isothiocyanate dextran exclusion assay.By whole genome sequencing, we demonstrated that the phenotypes differ by a single nucleotide base pair in capsular gene cpsE (C to G change at gene position 1135) predicted to result in amino acid change from arginine to glycine at position 379, located in the cytoplasmic, enzymatically active, region of this transmembrane protein. This SNP is responsible for loss of capsule production as the phenotype is transferred with the capsule operon. The nonencapsulated variant is superior in growth in vitro and is also 117-fold more adherent to and more invasive into Detroit 562 human epithelial cells than the encapsulated variant.Expression of six competence pathway genes and one competence-associated gene was 11 to 34-fold higher in the nonencapsulated variant than the encapsulated and transformation frequency was 3.7-fold greater. CONCLUSIONS: We identified a new single point mutation in capsule gene cpsE of a clinical S. pneumoniae serotype 18C isolate sufficient to cause loss of capsule expression resulting in the co-existence of the encapsulated and nonencapsulated phenotype. The mutation caused phenotypic changes in growth, adherence to epithelial cells and transformability. Mutation in capsule gene cpsE may be a way for S. pneumoniae to lose its capsule and increase its colonization potential

    Impact of Neuroprotection on Incidence of Alzheimer's Disease

    Get PDF
    Converging evidence suggests that high levels of education and intellectual activity increase the cognitive reserve and reduce the risk of dementia. However, little is known about the impact that different neuroprotective strategies may have on the incidence of Alzheimer's disease. Using a simple mathematical regression model, it is shown here that age-specific counts of basic cognitive units (surrogate of neurons or synapses) in the normal population can be estimated from Alzheimer's incidence rates. Hence, the model can be used to test the effect of neuroprotection on Alzheimer's incidence. It was found that the number of basic cognitive units decreases with age, but levels off in older people. There were no gender differences after correcting for survival. The model shows that even modest neuroprotective effects on basic cognitive units can lead to dramatic reductions in the number of Alzheimer's cases. Most remarkably, a 5% increase in the cognitive reserve would prevent one third of Alzheimer's cases. These results suggest that public health policies aimed at increasing the cognitive reserve in the general population (e.g., implementing higher levels of education) are likely the most effective strategy for preventing Alzheimer's disease
    corecore