33,393 research outputs found

    Relativistic structure formation models and gravitoelectromagnetism

    Full text link
    In the framework of Lagrangian perturbation theory in general relativity we discuss the possibility to split the Einstein equations, written in terms of spatial Cartan coframes within a 3+1 foliation of spacetime, into gravitoelectric and gravitomagnetic parts. While the former reproduces the full hierarchy of the Newtonian perturbation solutions, the latter contains non-Newtonian aspects like gravitational waves. This split can be understood and made unique through the Hodge decomposition of Cartan coframe fields.Comment: 6 pages; contribution to the proceedings of MG14, Parallel Session DE

    Total energy expenditure in obese Kuwaiti primary school children assessed by the doubly-labelled water technique

    Get PDF
    The aim of this pilot study was to assess body composition and total energy expenditure (TEE) in 35 obese 7–9 years old Kuwaiti children (18 girls and 17 boys). Total body water (TBW) and TEE were assessed by doubly-labeled water technique. TBW was derived from the intercept of the elimination rate of deuterium and TEE from the difference in elimination rates of 18O and deuterium. TBW was used to estimate fat-free mass (FFM), using hydration factors for different ages and gender. Fat mass (FM) was calculated as the difference between body weight and FFM. Body weight was not statistically different but TBW was significantly higher (p = 0.018) in boys (44.9% ± 3.3%) than girls (42.4% ± 3.0%), while girls had significantly higher estimated FM (45.2 ± 3.9 weight % versus 41.6% ± 4.3%; p = 0.014). TEE was significantly higher in boys (2395 ± 349 kcal/day) compared with girls (1978 ± 169 kcal/day); p = 0.001. Estimated physical activity level (PAL) was significantly higher in boys; 1.61 ± 0.167 versus 1.51 ± 0.870; p = 0.034. Our results provide the first dataset of TEE in 7–9 years old obese Kuwaiti children and highlight important gender differences to be considered during the development of school based interventions targeted to combat childhood obesity

    First Results of the Search for Neutrinoless Double-Beta Decay with the NEMO 3 Detector

    Get PDF
    The NEMO 3 detector, which has been operating in the Frejus underground laboratory since February 2003, is devoted to the search for neutrinoless double beta decay (bb0nu). Half-lives of the two neutrino double beta decays (bb2nu) have been measured for 100Mo and 82Se. After 389 effective days of data collection from February 2003 until September 2004 (Phase I), no evidence for neutrinoless double beta decay was found from ~7kg of 100Mo and ~1 kg of 82Se. The corresponding lower limits for the half-lives are 4.6 x 10^23 years for 100Mo and 1.0 x10^23 years for 82Se (90% C.L.). Depending on the nuclear matrix elements calculation, limits for the effective Majorana neutrino mass are < 1.7-4.9 eV for 82Se

    Lagrangian theory of structure formation in relativistic cosmology III: gravitoelectric perturbation and solution schemes at any order

    Get PDF
    The relativistic generalization of the Newtonian Lagrangian perturbation theory is investigated. In previous works, the first-order trace solutions that are generated by the spatially projected gravitoelectric part of the Weyl tensor were given together with extensions and applications for accessing the nonperturbative regime. We furnish here construction rules to obtain from Newtonian solutions the gravitoelectric class of relativistic solutions, for which we give the complete perturbation and solution schemes at any order of the perturbations. By construction, these schemes generalize the complete hierarchy of solutions of the Newtonian Lagrangian perturbation theory.Comment: 17 pages, a few minor extensions to match the published version in PR

    Modelling PolSAR Scattering Signatures at Long Wavelengths of Glacier Ice Volumes

    Get PDF
    The crucial role of cryosphere for understanding the global climate change has been widely recognized in recent decades [1]. Glaciers and ice sheets are the main components of the cryosphere and constitute the basic reservoir of fresh water for high-latitudes and many densely populated areas at mid and low latitudes. The need of information on large scale and the inaccessibility of polar regions qualify synthetic aperture radar (SAR) sensors for glaciological applications. At long wavelengths (e.g. P- and L- band), SAR systems are capable to penetrate several tens of meters deep into the ice body. Consequently, they are sensitive to the glacier surface as well as to sub-surface ice structures. However, the complexity of the scattering mechanisms, occurring within the glacier ice volume, turns the interpretation of SAR scattering signatures into a challenge and large uncertainties remain in estimating reliably glacier accumulation rates, ice thickness, subsurface structures and discharge rates. In literature great attention has been given to model-based decomposition techniques of polarimetric SAR (PolSAR) data. The first model-based decomposition for glacier ice was proposed in [2] as an adaptation and extension of the well-known Freeman-Durden model [3]. Despite this approach was able to interpret many effects in the experimental data, it could not explain, for instance, co-polarization phase differences. The objective of this study is to develop a novel polarimetric model that attempts to explain PolSAR signatures of glacier ice. A new volume scattering component from a cloud of oriented particles will be presented. In particular, air and atmospheric gases inclusions, typically present in ice volumes [4], are modeled as oblate spheroidal particles, mainly horizontally oriented and embedded in a glacier ice background. Since the model has to account for an oriented ice volume, the anisotropic nature of the ice medium has to be incorporated. This phenomenon, neglected in [2], leads to different refraction indices, i.e. differential propagation velocities (phase differences) and losses of the electromagnetic wave along different polarizations [5]. Furthermore, the introduction of additional scattering components (e.g. from the glacier surface) will extend and complete the polarimetric model. For a first quality assessment, modeled polarimetric signatures are compared to airborne fully polarimetric SAR data at L- and P-band, collected over the Austfonna ice-cap, in Svalbard, Norway, by DLR’s E-SAR system within the ICESAR 2007 campaign

    Organic Agriculture in Saudi Arabia - Sector Study 2012

    Get PDF
    This publication compiles the facts and figures of the organic sector in Saudi Arabia. It is a valuable resource for local stakeholders and interested trading companies. The publication is resulting from a collaboration between GIZ (Deutsche Gesellschaft fĂĽr Internationale Zusammenarbeit) and FiBL together with its partners of the Saudi Ministry of Agriculture and Saudi Organic Farming Association (SOFA)

    Effects of novel muscarinic M3 receptor ligand C1213 in pulmonary arterial hypertension models.

    Get PDF
    Pulmonary hypertension (PH) is a complex disease comprising a pathologic remodeling and thickening of the pulmonary vessels causing an after load on the right heart ventricle that can result in ventricular failure. Triggered by oxidative stress, episodes of hypoxia, and other undetermined causes, PH is associated with poor outcomes and a high rate of morbidity. In the neonate, this disease has a similar etiology but is further complicated by the transition to breathing after birth, which requires a reduction in vascular resistance. Persistent pulmonary hypertension of the newborn (PPHN) is one form of PH that is frequently unresponsive to current therapies including inhaled nitric oxide (due to lack of proper absorption and diffusion), and other therapeutics targeting signaling mediators in vascular endothelium and smooth muscle. The need for novel agents, which target distinct pathways in pulmonary hypertension, remains. Herein, we investigated the therapeutic effects of novel muscarinic receptor ligand C1213 in models of PH We demonstrated that via M3 muscarinic receptors, C1213 induced activating- eNOS phosphorylation (serine-1177), which is known to lead to nitric oxide (NO) production in endothelial cells. Using signaling pathway inhibitors, we discovered that AKT and calcium signaling contributed to eNOS phosphorylation induced by C1213. As expected for an eNOS-stimulating agent, in ex vivo and in vivo models, C1213 triggered pulmonary vasodilation and induced both pulmonary artery and systemic blood pressure reductions demonstrating its potential value in PH and PPHN In brief, this proof-of-concept study provides evidence that an M3 muscarinic receptor functionally selective ligand stimulates downstream pathways leading to antihypertensive effects using in vitro, ex vivo, and in vivo models of PH
    • …
    corecore