19 research outputs found

    Structural and electrical properties of ZnS/CdTe and ZnTe/CdTe heterostructures

    Get PDF
    We investigated the structural, substructural and electrical properties of ZnS/CdTe and ZnTe/CdTe heterostructures obtained by the close-spaced vacuum sublimation. It was found that the structural properties of CdTe and ZnTe thin films deposited on ZnS or CdTe sublayers are better than those of the films obtained on glass substrate at the same growth conditions. XRD-analysis has shown that Zn(x)Cd(1- x)Te(x = 0.21-0.30) solid solutions having the cubic phase were formed near the films’ interfaces. Furthermore, the saturation current, the ideality factor and the value of the potential barrier height were determined by the analysis of dark currentevoltage characteristics. This makes it possible to establish optimal growth conditions of ZnS/CdTe heterojunctions. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3016

    Age is a strong cardiovascular risk factor in hypertensive patients

    Get PDF
    The Fifth Annual Scientific Meeting of the Institute of Cardiovascular Science and Medicine, Angiogenesis and Cellular Cardiomyoplasty, Wanchai, Hong Kong, 01-02 December 2001. In Journal of Hong Kong College of Cardiology, 200

    Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates

    No full text
    Solar energy represents one of the most abundant and yet least harvested sources of renewable energy. In recent years, tremendous progress has been made in developing photovoltaics that can be potentially mass deployed1, 2, 3. Of particular interest to cost-effective solar cells is to use novel device structures and materials processing for enabling acceptable efficiencies4, 5, 6. In this regard, here, we report the direct growth of highly regular, single-crystalline nanopillar arrays of optically active semiconductors on aluminium substrates that are then configured as solar-cell modules. As an example, we demonstrate a photovoltaic structure that incorporates three-dimensional, single-crystalline n-CdS nanopillars, embedded in polycrystalline thin films of p-CdTe, to enable high absorption of light and efficient collection of the carriers. Through experiments and modelling, we demonstrate the potency of this approach for enabling highly versatile solar modules on both rigid and flexible substrates with enhanced carrier collection efficiency arising from the geometric configuration of the nanopillars
    corecore