1,124 research outputs found
The risk of harm whilst waiting for varicose veins procedure.
INTRODUCTION: Varicose veins (VV) negatively impact quality of life (QoL) and have risks of major complications including bleeding, ulceration and phlebitis. During the COVID-19 pandemic, the VSGBI (Vascular Society of Great Britain and Ireland) and GIRFT (Get It Right First Time) classified VVs as lowest priority for intervention. OBJECTIVE: This study aims to determine harm caused and the impact on the QoL on patients waiting for their VVs procedures for more than 1 year. METHODS: This was a prospective study conducted at the Norfolk and Norwich University Hospital (NNUH). Patients with VVs awaiting intervention for >1 year were included in the study. Patients with CEAP C6 disease were considered to be too high risk to be invited for treatment during the Covid-19 pandemic. Patients were sent QoL questionnaires and underwent a telephone consultation to assess harm. Both generic (EQ-VAS and EQ-5D) and disease-specific (AVVQ and CIVIQ-14) instruments were utilised. There were no control groups available for comparison. RESULTS: 275 patients were identified (37.1% male) with median time on waiting list of 60 weeks (IQR 56-65). 19 patients (6.9%) came to major harm, including phlebitis (3.6%), bleeding (1.8%) and ulceration (1.8%). Fifty-two patients (18.9%) had minor harm, including worsening pain (12.7%) and swelling (6.2%). 6.9% reported psychological harm. Rising CEAP stage was also associated with worsening level of harm in patients with C5-6 disease (p < 0.0001). Only 8.7% stated they would decline surgery during the pandemic. 104 QoL questionnaires were returned. Median EQ-VAS and EQ-5D was 75 (IQR: 60-85) and 0.685 (0.566-0.761), respectively. Median AVVQ score was 23.2 (14.9-31.0) and CIVIQ-14 score was 33 (21-44).ConclusionsThis study highlights the impact of delaying VVs surgery during a pandemic. A significant rate of both major and minor as well as psychological harm was reported. In addition, VVs had a significant detriment to quality of life
Associations between early trajectories of amygdala development and later school-age anxiety in two longitudinal samples
Amygdala function is implicated in the pathogenesis of autism spectrum disorder (ASD) and anxiety. We investigated associations between early trajectories of amygdala growth and anxiety and ASD outcomes at school age in two longitudinal studies: high- and low-familial likelihood for ASD, Infant Brain Imaging Study (IBIS, n = 257) and typically developing (TD) community sample, Early Brain Development Study (EBDS, n = 158). Infants underwent MRI scanning at up to 3 timepoints from neonate to 24 months. Anxiety was assessed at 6-12 years. Linear multilevel modeling tested whether amygdala volume growth was associated with anxiety symptoms at school age. In the IBIS sample, children with higher anxiety showed accelerated amygdala growth from 6 to 24 months. ASD diagnosis and ASD familial likelihood were not significant predictors. In the EBDS sample, amygdala growth from birth to 24 months was associated with anxiety. More anxious children had smaller amygdala volume and slower rates of amygdala growth. We explore reasons for the contrasting results between high-familial likelihood for ASD and TD samples, grounding results in the broader literature of variable associations between early amygdala volume and later anxiety. Results have the potential to identify mechanisms linking early amygdala growth to later anxiety in certain groups
Swift J164449.3+573451 event: generation in the collapsing star cluster?
We discuss the multiband energy release in a model of a collapsing galactic
nucleus, and we try to interpret the unique super-long cosmic gamma-ray event
Swift J164449.3+573451 (GRB 110328A by early classification) in this scenario.
Neutron stars and stellar-mass black holes can form evolutionary a compact
self-gravitating subsystem in the galactic center. Collisions and merges of
these stellar remnants during an avalanche contraction and collapse of the
cluster core can produce powerful events in different bands due to several
mechanisms. Collisions of neutron stars and stellar-mass black holes can
generate gamma-ray bursts (GRBs) similar to the ordinary models of short GRB
origin. The bright peaks during the first two days may also be a consequence of
multiple matter supply (due to matter release in the collisions) and accretion
onto the forming supermassive black hole. Numerous smaller peaks and later
quasi-steady radiation can arise from gravitational lensing, late accretion of
gas onto the supermassive black hole, and from particle acceleration by shock
waves. Even if this model will not reproduce exactly all the Swift
J164449.3+573451 properties in future observations, such collapses of galactic
nuclei can be available for detection in other events.Comment: 7 pages, replaced by the final versio
“We live in a plural world”: a framework for rapid interdisciplinary and community engagement
Designing effective products and services requires a sensitive understanding of the people for whom you are designing. There are a number of established approaches for achieving this, all of which are predicated on notions of community participation in research and development work. However, such participatory approaches are often deemed to be too specialized and time-consuming to be used at scale. Taking the opportunity generated by four concurrent RiseWise secondments in Guimarães, Portugal, we developed, trialled, and evaluated a framework for working together across disciplines and levels of experience, and with a local community of older adults. This chapter details this work and makes two key contributions. In describing our approach to engaging with a diverse group of older people through their local community association, we first provide a framework for inclusive and efficient community involvement. Secondly, we reflect on the experience of consolidating approaches and knowledge across disciplines within the research team, and on the impact that working closely with the community had on the research team.RiseWise (Marie Skłodowska-Curie Research and Innovation Staff Exchange under grant agreement 690874
Recombinant T-Cell Receptor Ligand (RTL) for Treatment of Multiple Sclerosis: A Double-Blind, Placebo-Controlled, Phase 1, Dose-Escalation Study
Background. Recombinant T-cell receptor ligand 1000 (RTL1000) is a single-chain protein construct containing the outer two domains of HLA-DR2 linked to myelin-oligodendrocyte-glycoprotein- (MOG-) 35–55 peptide. Analogues of RTL1000 induce T-cell tolerance, reverse clinical and histological disease, and promote repair in experimental autoimmune encephalomyelitis (EAE) in DR2 transgenic, C57BL/6, and SJL/J mice. Objective. Determining the maximum tolerated dose, safety, and tolerability of RTL1000 in multiple sclerosis (MS) subjects. Methods. This was a multicenter, Phase I dose-escalation study in HLA-DR2+ MS subjects. Consecutive cohorts received RTL1000 doses of 2, 6, 20, 60, 200, and 100 mg, respectively. Subjects within each cohort randomly received a single intravenous infusion of RTL1000 or placebo at a 4 : 2 ratio. Safety monitoring included clinical, laboratory, and brain magnetic resonance imaging (MRI) evaluations. Results. Thirty-four subjects completed the protocol. All subjects tolerated the 2–60 mg doses of RTL1000. Doses ≥100 mg caused hypotension and diarrhea in 3 of 4 subjects, leading to discontinuation of further enrollment. Conclusions. The maximum tolerated dose of RTL1000 in MS subjects is 60 mg, comparable to effective RTL doses in EAE. RTL1000 is a novel approach for MS treatment that may induce immunoregulation without immunosuppression and promote neural repair
Seed dormancy and germination in Dodonaea viscosa (Sapindaceae) from south-western Saudi Arabia
Dodonaea viscosa (Sapindaceae) is widespread in the mountainous highlands of the southwestern part of the Kingdom of Saudi Arabia, where it is a medicinally important species for the people of Saudi Arabia. Seeds of this species were collected from Mount Atharb in the Al-Baha region, at an altitude of 2100 m. The aims of this study were to determine if the seeds of D. viscosa have physical dormancy (i.e. a water-impermeable seed coat) and, if so, what treatments would break dormancy, and what conditions promote germination after dormancy has been broken. The dormancy-breaking treatments included: soaking of seeds in concentrated sulfuric acid (H2SO4) for 10 minutes, immersion in boiling water for 10 minutes and exposure to 50 °C for 1 minute. After seeds had been pre-treated with H2SO4, to break dormancy, they were incubated at constant temperatures from 5 to 35°C, under 12-h photoperiods or in continuous darkness, and germination recorded. Salinity tolerance was investigated by incubating acid-scarified seeds in 0, 100, 200 and 300 mM NaCl in the light at 25°C. Untreated seeds had low final germination (30%). Seeds that had been acid-scarified, immersed in boiling water or exposed to 50 °C all achieved 91% subsequently when incubated at 25°C. Thus, seeds of this species in Saudi Arabia have physical dormancy, which can be broken by all three treatments designed to increase the permeability of the testa. After pre-treatment, there was a broad optimum constant temperature for germination that ranged between 5-25°C but germination was inhibited by higher temperatures (30 and 35°C). Light had little effect on this germination response. Scarified seeds were also sensitive to salinity, with the highest germination in distilled water and complete inhibition in 400 mM NaCl. Seeds that failed to germinate in saline treatments were mostly able to germinate on transfer to distilled water, suggesting osmotic inhibition
A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion
PublishedLetterThousands of transiting exoplanets have been discovered, but spectral analysis of their atmospheres has so far been dominated by a small number of exoplanets and data spanning relatively narrow wavelength ranges (such as 1.1 to 1.7 μm). Recent studies show that some hot- Jupiter exoplanets have much weaker water absorption features in their near-infrared spectra than predicted. The low amplitude of water signatures could be explained by very low water abundances, which may be a sign that water was depleted in the protoplanetary disk at the planet’s formation location, but it is unclear whether this level of depletion can actually occur. Alternatively, these weak signals could be the result of obscuration by clouds or hazes, as found in some optical spectra. Here we report results from a comparative study of ten hot Jupiters covering the wavelength range 0.3–5 micrometres, which allows us to resolve both the optical scattering and infrared molecular absorption spectroscopically. Our results reveal a diverse group of hot Jupiters that exhibit a continuum from clear to cloudy atmospheres. We find that the difference between the planetary radius measured at optical and infrared wavelengths is an effective metric for distinguishing different atmosphere types. The difference correlates with the spectral strength of water, so that strong water absorption lines are seen in clear-atmosphere planets and the weakest features are associated with clouds and hazes. This result strongly suggests that primordial water depletion during formation is unlikely and that clouds and hazes are the cause of weaker spectral signatures.European Research Council European Union’s Seventh Framework Programme (FP7/2007-2013)NASACNES and the French Agence Nationale de la Recherche (ANR)UK Science and Technology Facilities Council (STFC)NSFTennessee State UniversityState of Tennesse
Predicting the Impact of Climate Change on Threatened Species in UK Waters
Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina)
Explosive Nucleosynthesis: What we learned and what we still do not understand
This review touches on historical aspects, going back to the early days of
nuclear astrophysics, initiated by BFH and Cameron, discusses (i) the
required nuclear input from reaction rates and decay properties up to the
nuclear equation of state, continues (ii) with the tools to perform
nucleosynthesis calculations and (iii) early parametrized nucleosynthesis
studies, before (iv) reliable stellar models became available for the late
stages of stellar evolution. It passes then through (v) explosive environments
from core-collapse supernovae to explosive events in binary systems (including
type Ia supernovae and compact binary mergers), and finally (vi) discusses the
role of all these nucleosynthesis production sites in the evolution of
galaxies. The focus is put on the comparison of early ideas and present, very
recent, understanding.Comment: 11 pages, to appear in Springer Proceedings in Physics (Proc. of
Intl. Conf. "Nuclei in the Cosmos XV", LNGS Assergi, Italy, June 2018
Gravitational Waves from Gravitational Collapse
Gravitational wave emission from the gravitational collapse of massive stars
has been studied for more than three decades. Current state of the art
numerical investigations of collapse include those that use progenitors with
realistic angular momentum profiles, properly treat microphysics issues,
account for general relativity, and examine non--axisymmetric effects in three
dimensions. Such simulations predict that gravitational waves from various
phenomena associated with gravitational collapse could be detectable with
advanced ground--based and future space--based interferometric observatories.Comment: 68 pages including 13 figures; revised version accepted for
publication in Living Reviews in Relativity (http://www.livingreviews.org
- …