6,023 research outputs found

    2-Aminoindan and its ring-substituted derivatives interact with plasma membrane monoamine transporters and α2-adrenergic receptors

    Get PDF
    Rationale: Over the last decade many new psychostimulant analogues have appeared on the recreational drug market and most are derivatives of amphetamine or cathinone. Another class of designer drugs is derived from the 2-aminoindan structural template. Several members of this class, including the parent compound 2-aminoindan (2-AI), have been sold as designer drugs. Another aminoindan derivative, 5-methoxy-2-aminoindan (5-MeO-AI or MEAI), is the active ingredient in a product marketed online as an alcohol substitute. Methods: Here we tested 2-AI and its ring-substituted derivatives 5-MeO-AI, 5-methoxy-6-methyl-2-aminoindan (MMAI), and 5,6-methylenedioxy-2-aminoindan (MDAI) for their abilities to interact with plasma membrane monoamine transporters for dopamine (DAT), norepinephrine (NET) and serotonin (SERT). We also compared the binding affinities of the aminoindans at 29 receptor and transporter binding sites. Results: 2-AI was a selective substrate for NET and DAT. Ring substitution increased potency at SERT while reducing potency at DAT and NET. MDAI was moderately selective for SERT and NET, with 10-fold weaker effects on DAT. 5-MeO-AI exhibited some selectivity for SERT, having 6-fold lower potency at NET and 20-fold lower potency at DAT. MMAI was highly selective for SERT, with 100-fold lower potency at NET and DAT. The aminoindans had relatively high affinity for α2-adrenoceptor subtypes. 2-AI had particularly high affinity for α2C receptors (Ki = 41 nM) and slightly lower affinity for the α2A (Ki = 134 nM) and α2B (Ki = 211 nM) subtypes. 5-MeO-AI and MMAI also had moderate affinity for the 5-HT2B receptor. Conclusions: 2-AI is predicted to have (+)-amphetamine-like effects and abuse potential whereas the ring-substituted derivatives may produce 3,4-methylenedioxymethamphetamine (MDMA)-like effects but with less abuse liability

    N-Benzyl-5-methoxytryptamines as Potent Serotonin 5-HT2 Receptor Family Agonists and Comparison with a Series of Phenethylarnine Analogues

    Get PDF
    A series of N-benzylated-5-methoxytryptamine analogues was prepared and investigated, with special emphasis on substituents in the meta position of the benzyl group. A parallel series of several N-benzylated analogues of 2,5- dimethoxy-4-iodophenethylamine (2C-I) also was included for comparison of the two major templates (i.e., tryptamine and phenethylamine). A broad affinity screen at serotonin receptors showed that most of the compounds had the highest affinity at the 5-HT2 family receptors. Substitution at the para position of the benzyl group resulted in reduced affinity, whereas substitution in either the ortho or the meta position enhanced affinity. In general, introduction of a large lipophilic group improved affinity, whereas functional activity often followed the opposite trend. Tests of the compounds for functional activity utilized intracellular Ca2+ mobilization. Function was measured at the human 5-HT2A, 5-HT2B, and 5-HT2C receptors, as well as at the rat 5-HT2A and 5-HT2C receptors. There was no general correlation between affinity and function. Several of the tryptamine congeners were very potent functionally (EC50 values from 7.6 to 63 nM), but most were partial agonists. Tests in the mouse head twitch assay revealed that many of the compounds induced the head

    Climate change adaptation strategies and approaches for outdoor recreation

    Get PDF
    Climate change will alter opportunities and demand for outdoor recreation through altered winter weather conditions and season length, climate-driven changes in user preferences, and damage to recreational infrastructure, among other factors. To ensure that outdoor recreation remains sustainable in the face of these challenges, natural resource managers may need to adapt their recreation management. One of the major challenges of adapting recreation to climate change is translating broad concepts into specific, tangible actions. Using a combination of in-depth interviews of recreational managers and a review of peer-reviewed literature and government reports, we developed a synthesis of impacts, strategies, and approaches, and a tiered structure that organizes this information. Six broad climate adaptation strategies and 25 more specific approaches were identified and organized into a “recreation menu”. The recreation menu was tested with two national forests in the US in multi-day workshops designed to integrate these concepts into real-world projects that were at the beginning stages of the planning process. We found that the recreation menu was broad yet specific enough to be applied to recreation-focused projects with different objectives and climate change impacts. These strategies and approaches serve as stepping stones to enable natural resource and recreation managers to translate broad concepts into targeted and prescriptive actions for implementing adaptation

    Analytical characterization of N,N-diallyltryptamine (DALT) and 16 ring-substituted derivatives

    Get PDF
    Many N,N-dialkylated tryptamines show psychoactive properties in humans and the number of derivatives involved in multidisciplinary areas of research has grown over the last few decades. Whereas some derivatives form the basis of a range of medicinal products, others are predominantly encountered as recreational drugs, and in some cases, the areas of therapeutic and recreational use can overlap. In recent years, 5-methoxy-N,N-diallyltryptamine (5-MeO-DALT) has appeared as a new psychoactive substance (NPS) and ‘research chemical’ whereas 4-acetoxy-DALT and the ring-unsubstituted DALT have only been detected very recently. Strategies pursued in the authors’ laboratories included the preparation and biological evaluation of previously unreported N,N-diallyltryptamines (DALTs). This report describes the analytical characterization of seventeen DALTs. Fifteen DALTs were prepared by a microwave-accelerated Speeter and Anthony procedure following established procedures developed previously in the authors’ laboratories. In addition to DALT, the substances included in this study were 2-phenyl-, 4-acetoxy-, 4-hydroxy-, 4,5-ethylenedioxy-, 5-methyl-, 5-methoxy-, 5-methoxy-2-methyl-, 5-ethoxy-, 5-fluoro-, 5-fluoro-2-methyl-, 5-chloro-, 5-bromo-, 5,6-methylenedioxy-, 6-fluoro-, 7-methyl, and 7-ethyl-DALT, respectively. The DALTs were characterized by nuclear magnetic resonance spectroscopy (NMR), gas chromatography (GC) quadrupole and ion trap (EI/CI) mass spectrometry (MS), low and high mass accuracy MS/MS, ultraviolet diode array detection and GC solid-state infrared analysis, respectively. A comprehensive collection of spectral data was obtained that are provided to research communities who face the challenge of encountering newly emerging substances where analytical data are not available. These data are also relevant to researchers who might wish to explore the clinical and non-clinical uses of these substances

    Return of the lysergamides. Part I: Analytical and behavioural characterization of 1-propionyl-d-lysergic acid diethylamide (1P-LSD).

    Get PDF
    1-Propionyl-d-lysergic acid diethylamide hemitartrate (1P-LSD) has become available as a 'research chemical' in the form of blotters and powdered material. This non-controlled derivative of d-lysergic acid diethylamide (LSD) has previously not been described in the published literature despite being closely related to 1-acetyl-LSD (ALD-52), which was developed in the 1950s. This study describes the characterization of 1P-LSD in comparison with LSD using various chromatographic and mass spectrometric methods, infrared and nuclear magnetic resonance spectroscopy. An important feature common to LSD and other serotonergic hallucinogens is that they produce 5-HT2A -receptor activation and induce the head-twitch response (HTR) in rats and mice. In order to assess whether 1P-LSD displays LSD-like properties and activates the 5-HT2A receptor, male C57BL/6 J mice were injected with vehicle (saline) or 1P-LSD (0.025-0.8 mg/kg, IP) and HTR assessed for 30 min using magnetometer coil recordings. It was found that 1P-LSD produced a dose-dependent increase in HTR counts, and that it had ~38% (ED50  = 349.6 nmol/kg) of the potency of LSD (ED50  = 132.8 nmol/kg). Furthermore, HTR was abolished when 1P-LSD administration followed pretreatment with the selective 5-HT2A receptor antagonist M100907 (0.1 mg/kg, SC), which was consistent with the concept that the behavioural response was mediated by activation of the 5-HT2A receptor. These results indicate that 1P-LSD produces LSD-like effects in mice, consistent with its classification as a serotonergic hallucinogen. Nevertheless, the extent to which 1P-LSD might show psychoactive effects in humans similar to LSD remains to be investigated. Copyright © 2015 John Wiley & Sons, Ltd

    Climate Change and invasibility of the Antarctic benthos

    No full text
    Benthic communities living in shallow-shelf habitats in Antarctica (<100-m depth) are archaic in their structure and function. Modern predators, including fast-moving, durophagous (skeleton-crushing) bony fish, sharks, and crabs, are rare or absent; slow-moving invertebrates are the top predators; and epifaunal suspension feeders dominate many soft substratum communities. Cooling temperatures beginning in the late Eocene excluded durophagous predators, ultimately resulting in the endemic living fauna and its unique food-web structure. Although the Southern Ocean is oceanographically isolated, the barriers to biological invasion are primarily physiological rather than geographic. Cold temperatures impose limits to performance that exclude modern predators. Global warming is now removing those physiological barriers, and crabs are reinvading Antarctica. As sea temperatures continue to rise, the invasion of durophagous predators will modernize the shelf benthos and erode the indigenous character of marine life in Antarctica

    Return of the lysergamides. Part V: Analytical and behavioural characterization of 1-butanoyl-d-lysergic acid diethylamide (1B-LSD)

    Get PDF
    The psychedelic properties of lysergic acid diethylamide (LSD) have captured the imagination of researchers for many years and its rediscovery as an important research tool is evidenced by its clinical use within neuroscientific and therapeutic settings. At the same time, a number of novel LSD analogs have recently emerged as recreational drugs, which makes it necessary to study their analytical and pharmacological properties. One of the most recent additions to this series of LSD analogs is 1-butanoyl-LSD (1B-LSD), a constitutional isomer of 1-propionyl-6-ethyl-6-nor-lysergic acid diethylamide (1P-ETH-LAD), another LSD analog that was described previously. This study presents a comprehensive analytical characterization of 1B-LSD employing nuclear magnetic resonance spectroscopy (NMR), low- and high-resolution mass spectrometry platforms, gas- and liquid chromatography (GC and LC), and GC-condensed phase and attenuated total reflection infrared spectroscopy analyses. Analytical differentiation of 1B-LSD from 1P-ETH-LAD was straightforward. LSD and other serotonergic hallucinogens induce the head-twitch response (HTR) in rats and mice, which is mediated by 5-HT2A receptor activation. HTR studies were conducted in C57BL/6J mice to assess whether 1B-LSD has LSD-like behavioral effects. 1B-LSD produced a dose-dependent increase in HTR counts, acting with ~14% (ED50 = 976.7 nmol/kg) of the potency of LSD (ED50 = 132.8 nmol/kg). This finding suggests that the behavioral effects of 1B-LSD are reminiscent of LSD and other serotonergic hallucinogens. The possibility exists that 1B-LSD serves as a pro-drug for LSD. Further investigations are warranted to confirm whether 1B-LSD produces LSD-like psychoactive effects in humans

    Mid-Atlantic forest ecosystem vulnerability assessment and synthesis: a report from the Mid-Atlantic Climate Change Response Framework project

    Get PDF
    Forest ecosystems will be affected directly and indirectly by a changing climate over the 21st century. This assessment evaluates the vulnerability of 11 forest ecosystems in the Mid-Atlantic region (Pennsylvania, New Jersey, Delaware, eastern Maryland, and southern New York) under a range of future climates. We synthesized and summarized information on the contemporary landscape, provided information on past climate trends, and described a range of projected future climates. This information was used to parameterize and run multiple forest impact models, which provided a range of potential tree responses to climate. Finally, we brought these results before two multidisciplinary panels of scientists and land managers familiar with the forests of this region to assess ecosystem vulnerability through a formal consensus-based expert elicitation process
    corecore