38 research outputs found

    Haemophilus influenzae Infection Drives IL-17-Mediated Neutrophilic Allergic Airways Disease

    Get PDF
    A subset of patients with stable asthma has prominent neutrophilic and reduced eosinophilic inflammation, which is associated with attenuated airways hyper-responsiveness (AHR). Haemophilus influenzae has been isolated from the airways of neutrophilic asthmatics; however, the nature of the association between infection and the development of neutrophilic asthma is not understood. Our aim was to investigate the effects of H. influenzae respiratory infection on the development of hallmark features of asthma in a mouse model of allergic airways disease (AAD). BALB/c mice were intraperitoneally sensitized to ovalbumin (OVA) and intranasally challenged with OVA 12–15 days later to induce AAD. Mice were infected with non-typeable H. influenzae during or 10 days after sensitization, and the effects of infection on the development of key features of AAD were assessed on day 16. T-helper 17 cells were enumerated by fluorescent-activated cell sorting and depleted with anti-IL-17 neutralizing antibody. We show that infection in AAD significantly reduced eosinophilic inflammation, OVA-induced IL-5, IL-13 and IFN-Ξ³ responses and AHR; however, infection increased airway neutrophil influx in response to OVA challenge. Augmented neutrophilic inflammation correlated with increased IL-17 responses and IL-17 expressing macrophages and neutrophils (early, innate) and T lymphocytes (late, adaptive) in the lung. Significantly, depletion of IL-17 completely abrogated infection-induced neutrophilic inflammation during AAD. In conclusion, H. influenzae infection synergizes with AAD to induce Th17 immune responses that drive the development of neutrophilic and suppress eosinophilic inflammation during AAD. This results in a phenotype that is similar to neutrophilic asthma. Infection-induced neutrophilic inflammation in AAD is mediated by IL-17 responses

    Geographic variation in the aetiology, epidemiology and microbiology of bronchiectasis

    Get PDF
    Bronchiectasis is a disease associated with chronic progressive and irreversible dilatation of the bronchi and is characterised by chronic infection and associated inflammation. The prevalence of bronchiectasis is age-related and there is some geographical variation in incidence, prevalence and clinical features. Most bronchiectasis is reported to be idiopathic however post-infectious aetiologies dominate across Asia especially secondary to tuberculosis. Most focus to date has been on the study of airway bacteria, both as colonisers and causes of exacerbations. Modern molecular technologies including next generation sequencing (NGS) have become invaluable tools to identify microorganisms directly from sputum and which are difficult to culture using traditional agar based methods. These have provided important insight into our understanding of emerging pathogens in the airways of people with bronchiectasis and the geographical differences that occur. The contribution of the lung microbiome, its ethnic variation, and subsequent roles in disease progression and response to therapy across geographic regions warrant further investigation. This review summarises the known geographical differences in the aetiology, epidemiology and microbiology of bronchiectasis. Further, we highlight the opportunities offered by emerging molecular technologies such as -omics to further dissect out important ethnic differences in the prognosis and management of bronchiectasis.NMRC (Natl Medical Research Council, S’pore)MOH (Min. of Health, S’pore)Published versio

    Vaccine escape, increased breakthrough and reinfection in infliximab-treated patients with IBD during the Omicron wave of the SARS-CoV-2 pandemic

    Get PDF
    Objective Antitumour necrosis factor (TNF) drugs impair serological responses following SARS-CoV-2 vaccination. We sought to assess if a third dose of a messenger RNA (mRNA)-based vaccine substantially boosted anti-SARS-CoV-2 antibody responses and protective immunity in infliximab-treated patients with IBD. Design Third dose vaccine induced anti-SARS-CoV-2 spike (anti-S) receptor-binding domain (RBD) antibody responses, breakthrough SARS-CoV-2 infection, reinfection and persistent oropharyngeal carriage in patients with IBD treated with infliximab were compared with a reference cohort treated with vedolizumab from the impaCt of bioLogic therApy on saRs-cov-2 Infection and immuniTY (CLARITY) IBD study. Results Geometric mean (SD) anti-S RBD antibody concentrations increased in both groups following a third dose of an mRNA-based vaccine. However, concentrations were lower in patients treated with infliximab than vedolizumab, irrespective of whether their first two primary vaccine doses were ChAdOx1 nCoV-19 (1856 U/mL (5.2) vs 10 728 U/mL (3.1), p<0.0001) or BNT162b2 vaccines (2164 U/mL (4.1) vs 15 116 U/mL (3.4), p<0.0001). However, no differences in anti-S RBD antibody concentrations were seen following third and fourth doses of an mRNA-based vaccine, irrespective of the combination of primary vaccinations received. Post-third dose, anti-S RBD antibody half-life estimates were shorter in infliximab-treated than vedolizumab-treated patients (37.0 days (95% CI 35.6 to 38.6) vs 52.0 days (95% CI 49.0 to 55.4), p<0.0001). Compared with vedolizumab-treated, infliximab-treated patients were more likely to experience SARS-CoV-2 breakthrough infection (HR 2.23 (95% CI 1.46 to 3.38), p=0.00018) and reinfection (HR 2.10 (95% CI 1.31 to 3.35), p=0.0019), but this effect was uncoupled from third vaccine dose anti-S RBD antibody concentrations. Reinfection occurred predominantly during the Omicron wave and was predicted by SARS-CoV-2 antinucleocapsid concentrations after the initial infection. We did not observe persistent oropharyngeal carriage of SARS-CoV-2. Hospitalisations and deaths were uncommon in both groups. Conclusions Following a third dose of an mRNA-based vaccine, infliximab was associated with attenuated serological responses and more SARS-CoV-2 breakthrough infection and reinfection which were not predicted by the magnitude of anti-S RBD responses, indicative of vaccine escape by the Omicron variant
    corecore