17 research outputs found

    Study on Biofortification of Rice by Targeted Genetic Engineering

    Get PDF
    Micronutrient malnutrition is a major health problem in Bangladesh and also in many other developing countries, where a diversified diet is not affordable for the majority. In the present world- one, out of seven people suffers from hunger. Yet, there is a stealthier form of hunger than lack of food: micronutrient malnutrition or hidden hunger. While often providing enough calories, monotonous diets (of rural poor) frequently fail to deliver sufficient quantities of essential minerals and vitamins. Due to micronutrient deficiencies different characteristic features have been observed to the victims. Various estimates indicate that over two-thirds of the world population, for the most part women and children specially, pre-school children are deficient in at least one micronutrient. This can have devastating consequences for the life, health and well being of the individuals concerned (like premature death, blindness, weakened immune systems etc). Genetic engineering approach is the upcoming strategy to solve this problem. Genetically engineered biofortified staple crops specially, rice that are high in essential micronutrients (Fe, Zn, vitamin A) and adapted to local growing environments have the potential to significantly reduce the prevalence of micronutrient deficiencies specially to the rural poor. DOI: http://dx.doi.org/10.3329/ijarit.v2i2.14011 Int. J. Agril. Res. Innov. & Tech. 2 (2): 25-35, December, 201

    Diagnosed hematological malignancies in Bangladesh - a retrospective analysis of over 5000 cases from 10 specialized hospitals

    Get PDF
    Background The global burden from cancer is rising, especially as low-income countries like Bangladesh observe rapid aging. So far, there are no comprehensive descriptions reporting diagnosed cancer group that include hematological malignancies in Bangladesh. Methods This was a multi-center hospital-based retrospective descriptive study of over 5000 confirmed hematological cancer cases in between January 2008 to December 2012. Morphological typing was carried out using the “French American British” classification system. Results A total of 5013 patients aged between 2 to 90 years had been diagnosed with malignant hematological disorders. A 69.2% were males (n = 3468) and 30.8% females (n = 1545), with a male to female ratio of 2.2:1. The overall median age at diagnosis was 42 years. Acute myeloid leukemia was most frequent (28.3%) with a median age of 35 years, followed by chronic myeloid leukemia with 18.2% (median age 40 years), non-Hodgkin lymphoma (16.9%; median age 48 years), acute lymphoblastic leukemia (14.1%; median age 27 years), multiple myeloma (10.5%; median age 55 years), myelodysplastic syndromes (4.5%; median age 57 years) and Hodgkin’s lymphoma (3.9%; median age 36 years). The least common was chronic lymphocytic leukemia (3.7%; median age 60 years). Below the age of 20 years, acute lymphoblastic leukemia was predominant (37.3%), followed by acute myeloid leukemia (34%). Chronic lymphocytic leukemia and multiple myeloma had mostly occurred among older patients, aged 50-over. Conclusions For the first time, our study presents the pattern and distribution of diagnosed hematological cancers in Bangladesh. It shows differences in population distributions as compared to other settings with possibly a lower presence of non-Hodgkin lymphoma. There might be under-reporting of affected women. Further studies are necessary on the epidemiology, genetics and potential environmental risk factors within this rapidly aging country

    The influence of ethylene and ethylene modulators on shoot organogenesis in tomato

    Full text link
    [EN] The influence of ethylene and ethylene modulators on the in vitro organogenesis of tomato was studied using a highly regenerating accession of the wild tomato Solanum pennellii and an F1 plant resulting from a cross between Solanum pennellii and Solanum lycopersicum cv. Anl27, which is known to have a low regeneration frequency. Four ethylene-modulating compounds, each at four levels, were used, namely: cobalt chloride (CoCl 2), which inhibits the production of ethylene; AgNO 3 (SN), which inhibits ethylene action; and Ethephon and the precursor 1-aminocyclopropane-1-carboxylic acid (ACC), which both promote ethylene synthesis. Leaf explants of each genotype were incubated on shoot induction medium supplemented with each of these compounds at 0, 10 or 15 days following bud induction. The results obtained in our assays indicate that ethylene has a significant influence on tomato organogenesis. Concentrations of ethylene lower than the optimum (according to genotype) at the beginning of the culture may decrease the percentage of explants with buds (B), produce a delay in their appearance, or indeed inhibit bud formation. This was observed in S. pennellii and the F1 explants cultured on media with SN (5.8-58.0 ¿M) as well as in the F1 explants cultured on medium with 21.0 ¿M CoCl 2. The percentage of explants with shoots (R) and the mean number of shoots per explant with shoots (PR) also diminished in media that contained SN. Shoots isolated from these explants were less developed compared to those isolated from control explants. On the other hand, ethylene supplementation may contribute to enhancing shoot development. The number of isolable shoots from S. pennellii explants doubled in media with ACC (9.8-98.0 ¿M). Shoots isolated from explants treated with ethylene releasing compounds showed a higher number of nodes when ACC and Ethephon were added at 10 days (in F1 explants) or at 15 days (in S. pennellii) after the beginning of culture. Thus, the importance of studying not only the concentration but also the timing of the application of regulators when developing regeneration protocols has been made manifest. An excess of ethylene supplementation may produce an inhibitory effect, as was observed when using Ethephon (17.2-69.0 ¿M). These results show the involvement of ethylene in tomato organogenesis and lead us to believe that ethylene supplementation may contribute to enhancing regeneration and shoot development in tomato. © 2012 Springer Science+Business Media B.V.Carlos Trujillo has a predoctoral fellowship from the Spanish 'Ministerio de Educacion y Ciencia'. This work has been funded by Universitat Politecnica de Valencia (PAID 05-10). The technical assistance of N. Palacios and the revision of the manuscript's English by J. Bergen are gratefully acknowledged.Trujillo Moya, C.; Gisbert Domenech, MC. (2012). The influence of ethylene and ethylene modulators on shoot organogenesis in tomato. Plant Cell, Tissue and Organ Culture. 111(1):141-148. https://doi.org/10.1007/s11240-012-0168-zS1411481111Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology. Academic Press, San DiegoBhatia P, Ashwath N, Senaratna T, David M (2004) Tissue culture studies of tomato (Lycopersicon esculentum). Plant Cell Tiss Org Cult 78:1–21Bhatia P, Ashwath N, Midmore DJ (2005) Effects of genotype, explant orientation, and wounding on shoot regeneration in tomato. In Vitro Cell Dev Biol-Plant 41:457–464Biddington NL (1992) The Influence of ethylene in plant-tissue culture. Plant Growth Regul 11:173–187Brown DC, Thorpe TA (1995) Crop improvement through tissue culture. World J Microbiol Biotechnol 11(4):409–415Chraibi KMB, Latche A, Roustan JP, Fallot J (1991) Stimulation of shoot regeneration from cotyledons of Helianthus annuus by the ethylene inhibitors,silver and cobalt. Plant Cell Rep 10:204–207Devi R, Dhaliwal MS, Kaur A, Gosal SS (2008) Effect of growth regulators on in vitro morphogenic response of tomato. Indian J Biotechnol 7:526–530Dias LLC, Santa-Catarina C, Ribeiro DM, Barros RS, Floh EIS, Otoni WC (2009) Ethylene and polyamine production patterns during in vitro shoot organogenesis of two passion fruit species as affected by polyamines and their inhibitor. Plant Cell Tiss Org Cult 99:199–208Dimasi-Theriou K, Economou AS (1995) Ethylene enhances shoot formation in cultures of the peach rootstock GF-677 (Prunus persica × P. amygdalus). Plant Cell Rep 15:87–90Gisbert C, Arrillaga I, Roig LA, Moreno V (1999) Adquisition of a collection of Lycopersicon pennellii (Corr. D’Arcy) transgenic plants with uidA and nptII marker genes. J Hortic Sci Biotechnol 74:105–109Hughes KW (1981) In vitro ecology: exogenous factors affecting growth and morphogenesis in plant culture systems. Environ Exp Bot 21:281–288Huxter TJ, Thorpe TA, Reid DM (1981) Shoot initiation in light- and darkgrown tobacco callus: the role of ethylene. Physiol Plant 53:319–326Kumar PP, Lakshmanan P, Thorpe TA (1998) Regulation of morphogenesis in plant tissue culture by ethylene. In Vitro Cell Dev Biol Plant 34:94–103Lima JE, Benedito VA, Figueira A, Peres LEP (2009) Callus, shoot and hairy root formation in vitro as affected by the sensitivity to auxin and ethylene in tomato mutants. Plant Cell Rep 28:1169–1177Lu J, Vahala J, Pappinen A (2011) Involvement of ethylene in somatic embryogenesis in Scots pine (Pinus sylvestris L.). Plant Cell Tiss Org Cult 107:25–33Mohiuddin AKM, Chowdhury MKU, Abdullah ZC, Napis S (1997) Influence of silver nitrate (ethylene inhibitor) on cucumber in vitro shoot regeneration. Plant Cell Tiss Org Cult 51:75–78Moshkov IE, Novikova GV, Hall MA, George EF (2008) Plant Growth Regulators III: ethylene. In: George EF, Hall MA, Klerk G-JD (eds) Plant Propaga-tion by Tissue Culture, vol 1. 3rd edn. Springer, The Netherlands, pp 239–248Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497Osman MG, Khalafalla MM (2010) Promotion of in vitro shoot formation from shoot tip of tomato (Lycopersicon esculentum Mill. cv. Omdurman) by ethylene inhibitors. Int J Curr Res 4:82–86Ptak A, El Tahchy A, Wyzgolik G, Henry M, Laurain-Mattar D (2010) Effects of ethylene on somatic embryogenesis and galantamine content in Leucojum aestivum L. cultures. Plant Cell Tiss Org Cult 102:61–67Pua EC, Sim GE, Chi GL, Kong LF (1996) Synergistic effects of ethylene inhibitors and putrescine on shoot regeneration from hypocotyl explants of Chinese radish (Raphanus sativus L. var. longipinnatus Bailey) in vitro. Plant Cell Rep 15:685–690Reid MS (1995) Ethylene in plant growth, development and senescence. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology, 2nd edn. Kluwer Acad Publ, The Netherlands, pp 486–508Trujillo-Moya C, Gisbert C, Vilanova S, Nuez F (2011) Localization of QTLs for in vitro plant regeneration in tomato. BMC Plant Biol 11: art.140Tsuchisaka A, Theologis A (2004) Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Proc Natl Acad Sci USA 101:2275–2280Vogel JP, Woeste KE, Theologis A, Kieber JJ (1998) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc Natl Acad Sci USA 95:4766–477

    Study on Biofortification of Rice by Targeted Genetic Engineering

    No full text
    Micronutrient malnutrition is a major health problem in Bangladesh and also in many other developing countries, where a diversified diet is not affordable for the majority. In the present world- one, out of seven people suffers from hunger. Yet, there is a stealthier form of hunger than lack of food: micronutrient malnutrition or hidden hunger. While often providing enough calories, monotonous diets (of rural poor) frequently fail to deliver sufficient quantities of essential minerals and vitamins. Due to micronutrient deficiencies different characteristic features have been observed to the victims. Various estimates indicate that over two-thirds of the world population, for the most part women and children specially, pre-school children are deficient in at least one micronutrient. This can have devastating consequences for the life, health and well being of the individuals concerned (like premature death, blindness, weakened immune systems etc). Genetic engineering approach is the upcoming strategy to solve this problem. Genetically engineered biofortified staple crops specially, rice that are high in essential micronutrients (Fe, Zn, vitamin A) and adapted to local growing environments have the potential to significantly reduce the prevalence of micronutrient deficiencies specially to the rural poor. DOI: http://dx.doi.org/10.3329/ijarit.v2i2.14011 Int. J. Agril. Res. Innov. & Tech. 2 (2): 25-35, December, 201

    Pathogen-driven gene expression patterns lead to a novel approach to the identification of common therapeutic targets

    No full text
    Developing a common medication strategy for disease control and management could be greatly beneficial. Investigating the differences between diseased and healthy states using differentially expressed genes aids in understanding disease pathophysiology and enables the exploration of protein-drug interactions. This study aimed to find the most common genes in diarrhea-causing bacteria such as Salmonella enterica serovar Typhimurium, Campylobacter jejuni, Escherichia coli, Shigella dysenteriae (CESS) to find new drugs. Thus, differential gene expression datasets of CESS were screened through computational algorithms and programming. Subsequently, hub and common genes were prioritized from the analysis of extensive protein–protein interactions. Binding predictions were performed to identify the common potential therapeutic targets of CESS. We identified a total of 827 dysregulated genes that are highly linked to CESS. Notably, no common gene interaction was found among all CESS bacteria, but we identified 3 common genes in both Salmonella-Escherichia and Escherichia-Campylobacter infections. Later, out of 73 protein complexes, molecular simulations confirmed 5 therapeutic candidates from the CESS. We have developed a new pipeline for identifying therapeutic targets for a common medication strategy against CESS. However, further wet-lab validation is needed to confirm their effectiveness
    corecore