22 research outputs found

    Increased population exposure to Amphan‐scale cyclones under future climates

    Get PDF
    International audienceAbstract Southern Asia experiences some of the most damaging climate events in the world, with loss of life from some cyclones in the hundreds of thousands. Despite this, research on climate extremes in the region is substantially lacking compared to other parts of the world. To understand the narrative of how an extreme event in the region may change in the future, we consider Super Cyclone Amphan, which made landfall in May 2020, bringing storm surges of 2–4 m to coastlines of India and Bangladesh. Using the latest CMIP6 climate model projections, coupled with storm surge, hydrological, and socio‐economic models, we consider how the population exposure to a storm surge of Amphan's scale changes in the future. We vary future sea level rise and population changes consistent with projections out to 2100, but keep other factors constant. Both India and Bangladesh will be negatively impacted, with India showing >200% increased exposure to extreme storm surge flooding (>3 m) under a high emissions scenario and Bangladesh showing an increase in exposure of >80% for low‐level flooding (>0.1 m). It is only when we follow a low‐emission scenario, consistent with the 2°C Paris Agreement Goal, that we see no real change in Bangladesh's storm surge exposure, mainly due to the population and climate signals cancelling each other out. For India, even with this low‐emission scenario, increases in flood exposure are still substantial (>50%). While here we attribute only the storm surge flooding component of the event to climate change, we highlight that tropical cyclones are multifaceted, and damages are often an integration of physical and social components. We recommend that future climate risk assessments explicitly account for potential compounding factors

    Emergence of mcr-1 mediated colistin resistant Escherichia coli from a hospitalized patient in Bangladesh

    Get PDF
    Introduction: The emergence of plasmid mediated mcr in bacteria has become global public health threat. Herein, we report a mcr-1 positive E. coli in normal human flora from a patient admitted in Dhaka Medical College Hospital (DMCH). Methodology: In total, 700 non-duplicate rectal swabs were collected from DMCH during 13th May to 12th June 2018. E. coli from rectal swabs were isolated on chromogenic UTI media containing vancomycin 10mg/l (Liofilchem, Italy) and confirmed by MALDI-TOF. Minimum inhibitory concentrations (MIC) were determined by agar dilution and interpreted according to EUCAST breakpoints. Genomic analysis of mcr positive E. coli (MCRPEC) was performed by Illumina MiSeq sequencing and pulsed field gel electrophoresis (PFGE) using S1 nuclease DNA digests and blamcr-1 probing. Transferability of blamcr-1 were determined by conjugation assays. Results: We found one MCRPEC from 700 rectal swab screening which was isolated from the rectal swab culture of a 17-year boy who was admitted to the burns ICU, DMCH with 53% flame burn involving much of the trunk and face. Genome sequencing revealed that mcr-1 was present on an IncH12 plasmid of 257,243 bp and flanked by ISApaI1. The colistin resistance can be transferred to the recipient Klebsiella varricola with a frequency of 8.3 × 10-5. Transconjugants were more resistant to colistin than donor (MIC 32 µg/mL). Conclusions: This is the first human associated mcr in Bangladesh. These data indicate the need for a systematic “one health” surveillance in the country

    Micropropagation and conservation of selected endangered anticancer medicinal plants from the Western Ghats of India

    Get PDF
    Globally, cancer is a constant battle which severely affects the human population. The major limitations of the anticancer drugs are the deleterious side effects on the quality of life. Plants play a vital role in curing many diseases with minimal or no side effects. Phytocompounds derived from various medicinal plants serve as the best source of drugs to treat cancer. The global demand for phytomedicines is mostly reached by the medicinal herbs from the tropical nations of the world even though many plant species are threatened with extinction. India is one of the mega diverse countries of the world due to its ecological habitats, latitudinal variation, and diverse climatic range. Western Ghats of India is one of the most important depositories of endemic herbs. It is found along the stretch of south western part of India and constitutes rain forest with more than 4000 diverse medicinal plant species. In recent times, many of these therapeutically valued herbs have become endangered and are being included under the red-listed plant category in this region. Due to a sharp rise in the demand for plant-based products, this rich collection is diminishing at an alarming rate that eventually triggered dangerous to biodiversity. Thus, conservation of the endangered medicinal plants has become a matter of importance. The conservation by using only in situ approaches may not be sufficient enough to safeguard such a huge bio-resource of endangered medicinal plants. Hence, the use of biotechnological methods would be vital to complement the ex vitro protection programs and help to reestablish endangered plant species. In this backdrop, the key tools of biotechnology that could assist plant conservation were developed in terms of in vitro regeneration, seed banking, DNA storage, pollen storage, germplasm storage, gene bank (field gene banking), tissue bank, and cryopreservation. In this chapter, an attempt has been made to critically review major endangered medicinal plants that possess anticancer compounds and their conservation aspects by integrating various biotechnological tool

    Association of biosecurity and hygiene practices with avian influenza A/H5 and A/H9 virus infections in turkey farms

    No full text
    High pathogenicity avian influenza (HPAI) H5N1 outbreaks pose a significant threat to the health of livestock, wildlife, and humans. Avian influenza viruses (AIVs) are enzootic in poultry in many countries, including Bangladesh, necessitating improved farm biosecurity measures. However, the comprehension of biosecurity and hygiene practices, as well as the infection of AIV in turkey farms, are poorly understood in Bangladesh. Therefore, we conducted this study to determine the prevalence of AIV subtypes and their association with biosecurity and hygiene practices in turkey farms. We collected oropharyngeal and cloacal swabs from individual turkeys from 197 farms across 9 districts in Bangladesh from March to August 2019. We tested the swab samples for the AIV matrix gene (M gene) followed by H5, H7, and H9 subtypes using real-time reverse transcriptase-polymerase chain reaction (rRT-PCR). We found 24.68% (95% CI:21.54–28.04) of turkey samples were AIV positive, followed by 5.95% (95% CI: 4.33–7.97) for H5, 6.81% (95% CI: 5.06–8.93) for H9 subtype and no A/H7 was found. Using a generalized linear mixed model, we determined 10 significant risk factors associated with AIV circulation in turkey farms. We found that the absence of sick turkeys, the presence of footbaths, the absence of nearby poultry farms, concrete flooring, and the avoidance of mixing newly purchased turkeys with existing stock can substantially reduce the risk of AIV circulation in turkey farms (odds ratio ranging from 0.02 to 0.08). Furthermore, the absence of nearby live bird markets, limiting wild bird access, no visitor access, improved floor cleaning frequency, and equipment disinfection practices also had a substantial impact on lowering the AIV risk in the farms (odds ratio ranging from 0.10 to 0.13). The results of our study underscore the importance of implementing feasible and cost-effective biosecurity measures aimed at reducing AIV transmission in turkey farms. Particularly in resource-constrained environments such as Bangladesh, such findings might assist governmental entities in enhancing biosecurity protocols within their poultry sector, hence mitigating and potentially averting the transmission of AIV and spillover to humans
    corecore