10 research outputs found
BATLAS: Deconvoluting Brown Adipose Tissue
Recruitment and activation of thermogenic adipocytes have received increasing attention as a strategy to improve systemic metabolic control. The analysis of brown and brite adipocytes is complicated by the complexity of adipose tissue biopsies. Here, we provide an in-depth analysis of pure brown, brite, and white adipocyte transcriptomes. By combining mouse and human transcriptome data, we identify a gene signature that can classify brown and white adipocytes in mice and men. Using a machine-learning-based cell deconvolution approach, we develop an algorithm proficient in calculating the brown adipocyte content in complex human and mouse biopsies. Applying this algorithm, we can show in a human weight loss study that brown adipose tissue (BAT) content is associated with energy expenditure and the propensity to lose weight. This online available tool can be used for in-depth characterization of complex adipose tissue samples and may support the development of therapeutic strategies to increase energy expenditure in humans
Conséquences d'une carence en donneurs de méthyles sur la différenciation cellulaire, la survie et la neuroplasticité : approches mécanistiques in vitro sur des lignées neuronales
Folate (vitamin B9) and vitamin B12 act as cofactors in the one-carbon metabolism that regulates transmethylation reactions involved in epigenetic mechanisms. A deficiency in folate and/or B12 decreases the generation of methionine from homocysteine, a toxic amino acid that has been associated with pathologies of the central nervous system at all ages (spina bifida, Alzheimer's disease...). In order to depict the cellular and molecular mechanisms implicated in the response to the deficiency in these micronutrients, two new cell models have been developed. Thus, we have analyzed the effects of folate deficiency on proliferation, differentiation and neuroplasticity of neuronal progenitors obtained from the hippocampus of rat embryos, i.e. the H19-7 cell line. Regarding the second model, we designed an original approach by stable transfection of NIE-115 murine neuroblastoma cells to impose the anchorage of a chimeric B12 binding protein, transcobalaminoleosin (TO) to intracellular membrane in order to produce intracellular sequestration of B12. Taken together, our results have shown that deficiency-associated alterations of the one-carbon metabolism lead to reduced neurogenesis and to dramatic impairment of neuron differentiation. This suggests the existence of specific mechanisms through which vitamin B9/B12 deficiency and/or homocysteine may affect brain functioning and plasticity.Les folates (vitamine B9) et la vitamine B12 interviennent comme cofacteurs dans le métabolisme des monocarbones qui régule les réactions de transméthylation impliquées dans les mécanismes épigénétiques. Un déficit en folates et/ou B12 réduit la production de méthionine à partir de l'homocystéine, un acide aminé toxique dont l'accumulation a été associée à la survenue de pathologies du système nerveux central aux différents stades de la vie (spina bifida, maladie d'Alzheimer...). Afin d'explorer les mécanismes cellulaires et moléculaires impliqués dans la réponse à la carence en ces micronutriments, nous avons développé deux nouveaux modèles cellulaires. Ainsi, nous avons étudié les effets d'une déficience en folate sur la prolifération, la différenciation et la plasticité neuronale de progéniteurs neuronaux issus de l'hippocampe d'embryons de rat, la lignée H19-7. Le second modèle correspond à un projet innovant visant à obtenir une déplétion cellulaire en B12 par séquestration membranaire. Il a été obtenu par transfection stable de la lignée de neuroblastome murin NIE-115 dans le but d'induire l'expression d'une protéine chimère contenant le transporteur plasmatique de la vitamine B12, la transcobalamine II, et une protéine d'ancrage membranaire. L'ensemble de ces travaux montre que les altérations du métabolisme des monocarbones associées aux carences répriment la neurogenèse et induisent des troubles de la différentiation neuronale. Ceci suggère l'existence de mécanismes précis par lesquels le déficit en folates, en vitamine B12 et/ou l'homocystéine peuvent affecter le fonctionnement du cerveau et sa plasticité
Conséquences d'une carence en donneurs de méthyles sur la différenciation cellulaire, la survie et la neuroplasticité (approches mécanistiques in vitro sur des lignées neuronales)
Les folates (vitamine B9) et la vitamine B12 interviennent comme cofacteurs dans le métabolisme des monocarbones qui régule les réactions de transméthylation impliquées dans les mécanismes épigénétiques. Un déficit en folates et/ou B12 réduit la production de méthionine à partir de l'homocystéine, un acide aminé toxique dont l'accumulation a été associée à la survenue de pathologies du système nerveux central aux différents stades de la vie (spina bifida, maladie d'Alzheimer ). Afin d'explorer les mécanismes cellulaires et moléculaires impliqués dans la réponse à la carence en ces micronutriments, nous avons développé deux nouveaux modèles cellulaires. Ainsi, nous avons étudié les effets d'une déficience en folate sur la prolifération, la différenciation et la plasticité neuronale de progéniteurs neuronaux issus de l'hippocampe d'embryons de rat, la lignée H19-7. Le second modèle correspond à un projet innovant visant à obtenir une déplétion cellulaire en B12 par séquestration membranaire. Il a été obtenu par transfection stable de la lignée de neuroblastome murin NIE-115 dans le but d'induire l'expression d'une protéine chimère contenant le transporteur plasmatique de la vitamine B12, la transcobalamine II, et une protéine d'ancrage membranaire. L'ensemble de ces travaux montre que les altérations du métabolisme des monocarbones associées aux carences répriment la neurogenèse et induisent des troubles de la différentiation neuronale. Ceci suggère l'existence de mécanismes précis par lesquels le déficit en folates, en vitamine B12 et/ou l'homocystéine peuvent affecter le fonctionnement du cerveau et sa plasticité.Folate (vitamin B9) and vitamin B12 act as cofactors in the one-carbon metabolism that regulates transmethylation reactions involved in epigenetic mechanisms. A deficiency in folate and/or B12 decreases the generation of methionine from homocysteine, a toxic amino acid that has been associated with pathologies of the central nervous system at all ages (spina bifida, Alzheimer's disease ). In order to depict the cellular and molecular mechanisms implicated in the response to the deficiency in these micronutrients, two new cell models have been developed. Thus, we have analyzed the effects of folate deficiency on proliferation, differentiation and neuroplasticity of neuronal progenitors obtained from the hippocampus of rat embryos, i.e. the H19-7 cell line. Regarding the second model, we designed an original approach by stable transfection of NIE-115 murine neuroblastoma cells to impose the anchorage of a chimeric B12 binding protein, transcobalaminoleosin (TO) to intracellular membrane in order to produce intracellular sequestration of B12. Taken together, our results have shown that deficiency-associated alterations of the one-carbon metabolism lead to reduced neurogenesis and to dramatic impairment of neuron differentiation. This suggests the existence of specific mechanisms through which vitamin B9/B12 deficiency and/or homocysteine may affect brain functioning and plasticity.NANCY1-Bib. numérique (543959902) / SudocSudocFranceF
The Fate of Transplanted Olfactory Progenitors Is Conditioned by the Cell Phenotypes of the Receiver Brain Tissue in Cocultures
Among the numerous candidates for cell therapy of the central nervous system (CNS), olfactory progenitors (OPs) represent an interesting alternative because they are free of ethical concerns, are easy to collect, and allow autologous transplantation. In the present study, we focused on the optimization of neuron production and maturation. It is known that plated OPs respond to various trophic factors, and we also showed that the use of Nerve Growth Factor (NGF) allowed switching from a 60/40 neuron/glia ratio to an 80/20 one. Nevertheless, in order to focus on the integration of OPs in mature neural circuits, we cocultured OPs in primary cultures obtained from the cortex and hippocampus of newborn mice. When dissociated OPs were plated, they differentiated into both glial and neuronal phenotypes, but we obtained a 1.5-fold higher viability in cortex/OP cocultures than in hippocampus/OP ones. The fate of OPs in cocultures was characterized with different markers such as BrdU, Map-2, and Synapsin, indicating a healthy integration. These results suggest that the integration of transplanted OPs might by affected by trophic factors and the environmental conditions/cell phenotypes of the host tissue. Thus, a model of coculture could provide useful information on key cell events for the use of progenitors in cell therapy
Homocysteinylation of neuronal proteins contributes to folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells.
International audienceDespite the key role in neuronal development of a deficit in the methyl donor folate, little is known on the underlying mechanisms. We therefore studied the consequences of folate deficiency on proliferation, differentiation, and plasticity of the rat H19-7 hippocampal cell line. Folate deficit reduced proliferation (17%) and sensitized cells to differentiation-associated apoptosis (+16%). Decreased production (-58%) of S-adenosylmethionine (the universal substrate for transmethylation reactions) and increased expression of histone deacetylases (HDAC4,6,7) would lead to epigenomic changes that may impair the differentiation process. Cell polarity, vesicular transport, and synaptic plasticity were dramatically affected, with poor neurite outgrowth (-57%). Cell treatment by an HDAC inhibitor (SAHA) led to a noticeable improvement of cell polarity and morphology, with longer processes. Increased homocysteine levels (+55%) consecutive to folate shortage produced homocysteinylation, evidenced by coimmunoprecipitations and mass spectrometry, and aggregation of motor proteins dynein and kinesin, along with functional alterations, as reflected by reduced interactions with partner proteins. Prominent homocysteinylation of key neuronal proteins and subsequent aggregation certainly constitute major adverse effects of folate deficiency, affecting normal development with possible long-lasting consequences
BATLAS: Deconvoluting Brown Adipose Tissue
Recruitment and activation of thermogenic adipocytes have received increasing attention as a strategy to improve systemic metabolic control. The analysis of brown and brite adipocytes is complicated by the complexity of adipose tissue biopsies. Here, we provide an in-depth analysis of pure brown, brite, and white adipocyte transcriptomes. By combining mouse and human transcriptome data, we identify a gene signature that can classify brown and white adipocytes in mice and men. Using a machine-learning-based cell deconvolution approach, we develop an algorithm proficient in calculating the brown adipocyte content in complex human and mouse biopsies. Applying this algorithm, we can show in a human weight loss study that brown adipose tissue (BAT) content is associated with energy expenditure and the propensity to lose weight. This online available tool can be used for in-depth characterization of complex adipose tissue samples and may support the development of therapeutic strategies to increase energy expenditure in humans
Folate- and vitamin B-12-deficient diet during gestation and lactation alters cerebellar synapsin expression via impaired influence of estrogen nuclear receptor alpha
Deficiency in the methyl donors vitamin B-12 and folate during pregnancy and postnatal life impairs proper brain development. We studied the consequences of this combined deficiency on cerebellum plasticity in offspring from rat mothers subjected to deficient diet during gestation and lactation and in rat neuroprogenitor cells expressing cerebellum markers. The major proteomic change in cerebellum of 21-d-old deprived females was a 2.2-fold lower expression of synapsins, which was confirmed in neuroprogenitors cultivated in the deficient condition. A pathway analysis suggested that these proteomic changes were related to estrogen receptor a (ER-alpha)/Src tyrosine kinase. The influence of impaired ER-alpha pathway was confirmed by abnormal negative geotaxis test at d 19-20 and decreased phsophorylation of synapsins in deprived females treated by ER-alpha antagonist 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy) phenol]-1H-pyrazole dihydrochloride (MPP). This effect was consistent with 2-fold decreased expression and methylation of ER-a and subsequent decreased ER-alpha/PPAR-gamma coactivator 1 alpha (PGC-1 alpha) interaction in deficiency condition. The impaired ER-a pathway led to decreased expression of synapsins through 2-fold decreased EGR-1/Zif-268 transcription factor and to 1.7-fold reduced Src-dependent phosphorylation of synapsins. The treatment of neuroprogenitors with either MPP or PP1 (4-(4'-phenoxyanilino)-6,7-dimethoxyquinazoline, 6,7-dimethoxy-N-(4-phenoxyphenyl)-4-quinazolinamine, SKI-1, Src-11) Src inhibitor produced similar effects. In conclusion, the deficiency during pregnancy and lactation impairs the expression of synapsins through a deregulation of ER-alpha pathwa
BATLAS: Deconvoluting Brown Adipose Tissue
Summary: Recruitment and activation of thermogenic adipocytes have received increasing attention as a strategy to improve systemic metabolic control. The analysis of brown and brite adipocytes is complicated by the complexity of adipose tissue biopsies. Here, we provide an in-depth analysis of pure brown, brite, and white adipocyte transcriptomes. By combining mouse and human transcriptome data, we identify a gene signature that can classify brown and white adipocytes in mice and men. Using a machine-learning-based cell deconvolution approach, we develop an algorithm proficient in calculating the brown adipocyte content in complex human and mouse biopsies. Applying this algorithm, we can show in a human weight loss study that brown adipose tissue (BAT) content is associated with energy expenditure and the propensity to lose weight. This online available tool can be used for in-depth characterization of complex adipose tissue samples and may support the development of therapeutic strategies to increase energy expenditure in humans. : By combining mouse and human transcriptome data, Perdikari et al. identify a gene signature that can classify brown and white adipocytes. Using a machine-learning-based cell deconvolution approach, they develop an algorithm proficient in calculating the brown adipocyte content in complex biopsies. This web tool allows in-depth characterization of adipose tissue samples. Keywords: pure adipocyte populations, gene signature, deconvolution, BAT conten