643 research outputs found

    Metal artefact reduction for accurate tumour delineation in radiotherapy

    Get PDF
    Background and purpose: Two techniques for metal artefact reduction for computed tomography were studied in order to identify their impact on tumour delineation in radiotherapy. Materials and methods: Using specially designed phantoms containing metal implants (dental, spine and hip) as well as patient images, we investigated the impact of two methods for metal artefact reduction on (A) the size and severity of metal artefacts and the accuracy of Hounsfield Unit (HU) representation, (B) the visual impact of metal artefacts on image quality and (C) delineation accuracy. A metal artefact reduction algorithm (MAR) and two types of dual energy virtual monochromatic (DECT VM) reconstructions were used separately and in combination to identify the optimal technique for each implant site. Results: The artefact area and severity was reduced (by 48–76% and 58–79%, MAR and DECT VM respectively) and accurate Hounsfield-value representation was increased by 22–82%. For each energy, the observers preferred MAR over non-MAR reconstructions (p < 0.01 for dental and hip cases, p < 0.05 for the spine case). In addition, DECT VM was preferred for spine implants (p < 0.01). In all cases, techniques that improved target delineation significantly (p < 0.05) were identified. Conclusions: DECT VM and MAR techniques improve delineation accuracy and the optimal of reconstruction technique depends on the type of metal implant

    Graphene-based photovoltaic cells for near-field thermal energy conversion

    Get PDF
    Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. In far field, the efficiency of these systems is limited by the thermodynamic Schockley-Queisser limit corresponding to the case where the source is a black body. On the other hand, in near field, the heat flux which can be transferred to a photovoltaic cell can be several orders of magnitude larger because of the contribution of evanescent photons. This is particularly true when the source supports surface polaritons. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. Here we show that graphene-based hybrid photovoltaic cells can significantly enhance the generated power paving the way to a promising technology for an intensive production of electricity from waste heat.Comment: 5 pages, 4 figure

    The use of happiness research for public policy

    Get PDF
    Research on happiness tends to follow a "benevolent dictator" approach where politicians pursue people's happiness. This paper takes an antithetic approach based on the insights of public choice theory. First, we inquire how the results of happiness research may be used to improve the choice of institutions. Second, we show that the policy approach matters for the choice of research questions and the kind of knowledge happiness research aims to provide. Third, we emphasize that there is no shortcut to an optimal policy maximizing some happiness indicator or social welfare function since governments have an incentive to manipulate this indicator

    Currency Unions

    Get PDF
    A currency union is when several independent sovereign nations share a common currency. This has been a recurring phenomenon in monetary history. In this article I study the theoretical foundations of such unions, and discuss some important currency unions in history, most notably the case of the US. Finally I contrast the design of the EMU with economic theories and historical experiences of currency unions

    In vivo engineering of mobilized stem cell grafts with the immunomodulatory drug FTY720 for allogeneic transplantation

    Get PDF
    The immunological attributes of stem cell grafts play an important role in the outcome of allogeneic stem cell transplants. Currently, ex vivo manipulation techniques such as bulk T cell depletion or positive selection of CD34(+) cells are utilized to improve the immunological attributes of grafts and minimize the potential for graft-versus-host disease (GvHD). Here, we demonstrate a novel graft engineering technique, which utilizes the immunomodulatory drug FTY720 for in vivo depletion of naïve T (TN ) cells from donor G-CSF-mobilized grafts without ex vivo manipulation. We show that treatment of donor mice with FTY720 during mobilization depletes grafts of TN cells and prevents lethal GvHD following transplantation in a major mismatch setting. Importantly, both stem cells and NK cells are retained in the FTY720-treated grafts. FTY720 treatment does not negatively affect the engraftment potential of stem cells as demonstrated in our congenic transplants or the functionality of NK cells. In addition, potentially useful memory T cells may be retained in the graft. These findings suggest that FTY720 may be used to optimize the immunological attributes of G-CSF-mobilized grafts by removing potentially deleterious TN cells which can contribute to GvHD, and by retaining useful cells which can promote immunity in the recipient

    Changes in cognitive domains during three years in patients with Alzheimer's disease treated with donepezil

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective was to identify separate cognitive domains in the standard assessment tools (MMSE, ADAS-Cog) and analyze the process of decline within domains during three years in Alzheimer's disease (AD) patients with donepezil treatment.</p> <p>Method</p> <p>AD patients (n = 421) were recruited from a clinical multi-centre study program in Sweden. Patients were assessed every six months during three years. All patients received donepezil starting directly after study entry. After dropouts, 158 patients remained for analyses over three years. Data for the other patients were analysed until they dropped out (4 groups based on length in study).</p> <p>Results</p> <p>Factor analyses of all items suggested that there were three intercorrelated factors: a General, a Memory and a Spatial factor for which we constructed corresponding domains. Overall there was a cognitive improvement at six months followed by a linear drop over time for the three domains. Some group and domain differences were identified. Patients who remained longer in the study had better initial performance and a slower deterioration rate. The early dropouts showed no improvement at six months and many dropped out due to side effects. The other groups displayed a performance improvement at six months that was less pronounced in the Memory domain. Before dropping out, deterioration accelerated, particularly in the Spatial domain.</p> <p>Conclusion</p> <p>The course of illness in the three domains was heterogeneous among the patients. We were not able to identify any clinically relevant correlates of this heterogeneity. As an aid we constructed three algorithms corresponding to the cognitive domains, which can be used to characterize patients initially, identify rapid decliners and follow the course of the disease.</p

    Lymphocyte and monocyte flow cytometry immunophenotyping as a diagnostic tool in uncharacteristic inflammatory disorders

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with uncharacteristic inflammatory symptoms such as long-standing fatigue or pain, or a prolonged fever, constitute a diagnostic and therapeutic challenge. The aim of the present study was to determine if an extended immunophenotyping of lymphocytes and monocytes including activation markers can define disease-specific patterns, and thus provide valuable diagnostic information for these patients.</p> <p>Methods</p> <p>Whole blood from patients with gram-negative bacteraemia, neuroborreliosis, tuberculosis, acute mononucleosis, influenza or a mixed connective tissue disorders, as diagnosed by routine culture and serology techniques was analysed for lymphocyte and monocyte cell surface markers using a no-wash, no-lyse protocol for multi-colour flow cytometry method. The immunophenotyping included the activation markers HLA-DR and CD40. Plasma levels of soluble TNF alpha receptors were analysed by ELISA.</p> <p>Results</p> <p>An informative pattern was obtained by combining two of the analysed parameters: (i), the fractions of HLA-DR-expressing CD4+ T cells and CD8+ T cells, respectively, and (ii), the level of CD40 on CD14+ CD16- monocytes. Patients infected with gram-negative bacteria or EBV showed a marked increase in monocyte CD40, while this effect was less pronounced for tuberculosis, borrelia and influenza. The bacterial agents could be distinguished from the viral agents by the T cell result; CD4+ T cells reacting in bacterial infection, and the CD8+ T cells dominating for the viruses. Patients with mixed connective tissue disorders also showed increased activation, but with similar engagement of CD4+ and CD8+ T cells. Analysis of soluble TNF alpha receptors was less informative due to a large inter-individual variation.</p> <p>Conclusion</p> <p>Immunophenotyping including the combination of the fractions of HLA-DR expressing T cell subpopulations with the level of CD40 on monocytes produces an informative pattern, differentiating between infections of bacterial and viral origin. Furthermore, a quantitative analysis of these parameters revealed the novel finding of characteristic patterns indicating a subacute bacterial infection, such as borreliosis or tuberculosis, or a mixed connective tissue disorder. The employed flow cytometric method is suitable for clinical diagnostic laboratories, and may help in the assessment of patients with uncharacteristic inflammatory symptoms.</p

    Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials

    Full text link
    Recent years witnessed a rapid growth of interest of scientific and engineering communities to thermal properties of materials. Carbon allotropes and derivatives occupy a unique place in terms of their ability to conduct heat. The room-temperature thermal conductivity of carbon materials span an extraordinary large range - of over five orders of magnitude - from the lowest in amorphous carbons to the highest in graphene and carbon nanotubes. I review thermal and thermoelectric properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder. A special attention is given to the unusual size dependence of heat conduction in two-dimensional crystals and, specifically, in graphene. I also describe prospects of applications of graphene and carbon materials for thermal management of electronics.Comment: Review Paper; 37 manuscript pages; 4 figures and 2 boxe

    The application of multiplex PCR to detect seven different DNA targets in group B streptococci

    Get PDF
    Group B Streptococcus (GBS) causes severe infections in infants and in immunocompromised adults. GBS pathogenicity varies between and within serotypes, with considerable variation in genetic content between strains. For this reason, it is important to be able to carry out immediate and comprehensive diagnostics of these infections. Seven genes important for screening of GBS infection were detected: cfb gene encoding the CAMP factor presented in every GBS; the cps operon genes such as cps1aH, cps1a/2/3IJ, and cps5O specific for capsular polysaccharide types Ia, III, and V, respectively; macrolide resistance genes ermB and mefA/E; and the gbs2018 S10 region specific for ST17 hypervirulent clone. Standardization of multiplex PCR with the use of seven primer pairs was performed on 81 bacterial strains representing different GBS isolates (n = 75) and other Gram-positive cocci (n = 10). Multiplex PCR can be used as an effective screening method to detect different sequences important for the screening of GBS infection
    corecore