15 research outputs found

    Impact of Inconsistent Policies for Transfusion-Transmitted Malaria on Clinical Practice in Ghana

    Get PDF
    Background: Policies concerning the prevention of transfusion transmitted malaria (TTM) are the responsibility of blood transfusion services and malaria control programmes. To prevent spreading drug resistance due to over-use of malaria drugs, recent malaria treatment guidelines recommend prompt parasitological confirmation before treatment is started. In contrast, blood safety policies from the World Health Organisation (WHO) recommend presumptive malaria treatment for recipients of blood in endemic countries but evidence supporting this approach is lacking. Our study documented how these conflicting policies relating to malaria transmission through blood transfusion impact on clinical practice in a teaching hospital in West Africa. Methods/Principal Findings: We randomly selected and reviewed case notes of 151 patients within 24 hours of their receiving a blood transfusion. Transfusion practices including the confirmation of diagnosis and anti-malarial treatment given were compared across three departments; Obstetrics and Gynaecology (O&G), Paediatrics and Medicine. Overall, 66 (44%) of patients received malaria treatment within 24 hrs of their blood transfusion; of which only 2 (3%) received antimalarials based on a laboratory confirmation of malaria. Paediatric patients (87%) received the most anti-malarials and only 7 % and 24 % of recipients in medicine and O&G respectively received anti malarials. In 51 patients (78%), the anti-malarials were prescribed at the same time as the blood transfusion and anti-malarials prescriptions exceeded the number of patient

    Evaluation of a novel magneto-optical method for the detection of malaria parasites

    Get PDF
    Improving the efficiency of malaria diagnosis is one of the main goals of current malaria research. We have recently developed a magneto-optical (MO) method which allows high-sensitivity detection of malaria pigment (hemozoin crystals) in blood via the magnetically induced rotational motion of the hemozoin crystals. Here, we evaluate this MO technique for the detection of Plasmodium falciparum in infected erythrocytes using in-vitro parasite cultures covering the entire intraerythrocytic life cycle. Our novel method detected parasite densities as low as approximately 40 parasites per microliter of blood (0.0008% parasitemia) at the ring stage and less than 10 parasites/microL (0.0002% parasitemia) in the case of the later stages. These limits of detection, corresponding to approximately 20 pg/microL of hemozoin produced by the parasites, exceed that of rapid diagnostic tests and compete with the threshold achievable by light microscopic observation of blood smears. The MO diagnosis requires no special training of the operator or specific reagents for parasite detection, except for an inexpensive lysis solution to release intracellular hemozoin. The devices can be designed to a portable format for clinical and in-field tests. Besides testing its diagnostic performance, we also applied the MO technique to investigate the change in hemozoin concentration during parasite maturation. Our preliminary data indicate that this method may offer an efficient tool to determine the amount of hemozoin produced by the different parasite stages in synchronized cultures. Hence, it could eventually be used for testing the susceptibility of parasites to antimalarial drugs

    Transfusion-transmitted malaria in Ghana.

    No full text
    BACKGROUND: In sub-Saharan Africa, the prevalence of malaria parasitemia in blood donors varies from 0.6% to 50%. Although the burden of TTM in malaria-endemic countries is unknown, it is recommended that all donated blood is screened for malaria parasites. This study aimed to establish the incidence of TTM and identify a suitable screening test. METHODS: Pregnant women, children, and immunocompromised malaria-negative transfusion recipients in a teaching hospital in Ghana were recruited over the course of 1 year. Parasites detected in recipients within 14 days of the transfusion were genotyped and compared to parasites in the transfused blood. The presence of genotypically identical parasites in the recipient and the transfused blood confirmed transfusion-transmitted malaria. Four malaria screening tests were compared to assess their usefulness in the context of African blood banks. RESULTS: Of the 50 patients who received transfusions that were positive for Plasmodium falciparum by polymerase chain reaction (PCR), 7 recipients developed PCR-detectable parasitemia. In only 1 of the 50 recipients (2%) was the parasite identical to that in the transfused blood. The prevalence of P. falciparum malaria in transfused blood was 4.7% (21/445) by microscopy, 13.7% (60/440) by rapid diagnostic test, 18% (78/436) by PCR, and 22.2% (98/442) by enzyme immunoassay. CONCLUSIONS: Although malaria parasites are commonly detected in blood donors in malaria-endemic areas, transfusion-transmitted malaria occurs infrequently. Policies recommend screening blood donors for malaria, but none of the commonly used methods is sufficiently sensitive to be used by blood banks in malaria-endemic countries
    corecore