608 research outputs found

    Alternating phase-shifting mask design for low aberration sensitivity

    Get PDF
    Theories are developed to optimize the mask structure of alternating phase-shifting masks (PSMs) to minimize the average image placement error towards aberration under coherent imaging. The constraint of the optimization is a given mean value of RMS aberration, which corresponds to infinitely many sets of random Zernike coefficients. To begin the analysis, the image placement error is expressed as a function of the mask spectrum and the wave aberration. Monte Carlo analysis on the Zernike coefficients is then performed, which assures us that a global minimum of average image placement error is likely to occur at low phase widths. This result is confirmed by analytically considering the expected value of the square of the image placement error. By Golden Section Search, the optimal phase width is found to be 0.3707(λ/NA) at 0.07λ RMS aberration. This methodology of finding the optimal phase width is applicable to the design of all alternating PSMs.published_or_final_versio

    Effectiveness of HT-assisted Sinkhole and Blackhole Denial of Service Attacks Targeting Mesh Networks-on-chip

    Get PDF
    There are ample opportunities at both design and manufacturing phases to meddle in a many-core chip system, especially its underlining communication fabric, known as the networks-on-chip (NoC), through the inclusion of malicious hardware Trojans (HT). In this paper, we focus on studying two specific HT-assisted Denial-of-Service (DoS) attacks, namely the sinkhole and blackhole attacks, that directly target the NoC of a many-core chip. As of the blackhole attacks, those intermediate routers with inserted HTs can stop forwarding data packets/flits towards the packets’ destination; instead, packets are either dropped from the network or diverted to some other malicious nodes. Sinkhole attacks, which exhibit similar attack effects as blackhole attacks, can occur when the NoC supports adaptive routing. In this case, a malicious node actively solicits packets from its neighbor nodes by pretending to have sufficient free buffer slots. Effects and efficiencies of both sinkhole and blackhole DoS attacks are modeled and quantified in this paper, and a few factors that influence attack effects are found to be critical. Through fine-tuning of these parameters, both attacks are shown to cause more damages to the NoC, measured as over 30% increase in packet loss rate. Even with current detection and defense methods in place, the packet loss rate is still remarkably high, suggesting the need of new and more effective detection and defense methods against the enhanced blackhole and sinkhole attacks as described in the paper

    Optoelectronics with electrically tunable PN diodes in a monolayer dichalcogenide

    Full text link
    One of the most fundamental devices for electronics and optoelectronics is the PN junction, which provides the functional element of diodes, bipolar transistors, photodetectors, LEDs, and solar cells, among many other devices. In conventional PN junctions, the adjacent p- and n-type regions of a semiconductor are formed by chemical doping. Materials with ambipolar conductance, however, allow for PN junctions to be configured and modified by electrostatic gating. This electrical control enables a single device to have multiple functionalities. Here we report ambipolar monolayer WSe2 devices in which two local gates are used to define a PN junction exclusively within the sheet of WSe2. With these electrically tunable PN junctions, we demonstrate both PN and NP diodes with ideality factors better than 2. Under excitation with light, the diodes show photodetection responsivity of 210 mA/W and photovoltaic power generation with a peak external quantum efficiency of 0.2%, promising numbers for a nearly transparent monolayer sheet in a lateral device geometry. Finally, we demonstrate a light-emitting diode based on monolayer WSe2. These devices provide a fundamental building block for ubiquitous, ultra-thin, flexible, and nearly transparent optoelectronic and electronic applications based on ambipolar dichalcogenide materials.Comment: 14 pages, 4 figure

    Strategic Digitalization of UMKM Business as an Alternative to Survive the COVID - 19 Pandemic

    Get PDF
    The purpose of this study is to implement a business digitalization strategy so that micro, small and medium enterprises (UMKM) can survive the Covid 19 pandemic. This research method is descriptive qualitative based on UMKM survey data from the Katadata Insight Center (KIC) June 2020 in the Jabotabek area. From the results of this study it appears that UMKM business activities carried out with a conventional strategy (Offline System) contributed to a decrease in sales turnover by more than 30%. Meanwhile, UMKM business activities carried out with the strategy of digitalization UMKM (Online System) businesses such as Smart phones (PCs or lap tops) connected to the Internet only amounted to 3.8% of UMKM which experienced an increase in sales turnover. For this reason, it is necessary to build an infrastructure that supports the digitalization of UMKM in terms of online marketing of UMKM products

    A prospective cohort study comparing the reactogenicity of trivalent influenza vaccine in pregnant and non-pregnant women

    Get PDF
    Background: Influenza vaccination during pregnancy can prevent serious illness in expectant mothers and provide protection to newborns; however, historically uptake has been limited due to a number of factors, including safety concerns. Symptomatic complaints are common during pregnancy and may be mistakenly associated with reactions to trivalent influenza vaccine (TIV). To investigate this, we compared post-vaccination events self-reported by pregnant women to events reported by non-pregnant women receiving TIV. Methods: A prospective cohort of 1,086 pregnant women and 314 non-pregnant female healthcare workers (HCWs) who received TIV between March-May 2014 were followed-up seven days post-vaccination to assess local and systemic adverse events following immunisation (AEFIs). Women were surveyed by text message regarding perceived reactions to TIV. Those reporting an AEFI completed an interview by telephone or mobile phone to ascertain details. Logistic regression models adjusting for age and residence were used to compare reactions reported by pregnant women and non-pregnant HCWs. Results: Similar proportions of pregnant women and non-pregnant, female HCWs reported ≥1 reaction following vaccination with TIV (13.0% and 17.3%, respectively; OR = 1.2 [95% CI: 0.8-1.8]). Non-pregnant, female HCWs were more likely to report fever or headache compared to pregnant women (OR: 4.6 [95% CI 2.1-10.3] and OR: 2.2 [95% CI 1.0-4.6], respectively). No other significant differences in reported symptoms were observed. No serious vaccine-associated adverse events were reported, and less than 2% of each group sought medical advice for a reaction. Conclusions: We found no evidence suggesting pregnant women are more likely to report adverse events following influenza vaccination when compared to non-pregnant female HCWs of similar age, and in some cases, pregnant women reported significantly fewer adverse events. These results further support the safety of TIV administered in pregnant women

    Antenatal influenza and pertussis vaccination in Western Australia: A cross-sectional survey of vaccine uptake and influencing factors

    Get PDF
    Background: Influenza and pertussis vaccines have been recommended in Australia for women during each pregnancy since 2010 and 2015, respectively. Estimating vaccination coverage and identifying factors affecting uptake are important for improving antenatal immunisation services. Methods: A random sample of 800 Western Australian women ≥18 years of age who gave birth between 4th April and 4th October 2015 were selected. Of the 454 (57%) who were contactable by telephone, 424 (93%) completed a survey. Data were weighted by maternal age and area of residence to ensure representativeness. The proportion immunised against influenza and pertussis was the main outcome measure; multivariate logistic regression was used to identify factors significantly associated with antenatal vaccination. Results from the 2015 study were compared to similar surveys conducted in 2012–2014. Results: In 2015, 71% (95% CI 66–75) of women received pertussis-containing vaccine and 61% (95% CI 56–66) received influenza vaccine during pregnancy; antenatal influenza vaccine coverage was 18% higher than in 2014 (43%; 95% CI: 34–46). Pertussis and influenza vaccine were co-administered for 68% of the women who received both vaccines. The majority of influenza vaccinations in 2015 were administered during the third trimester of pregnancy, instead of the second trimester, as was observed in prior years. Women whose care provider recommended both antenatal vaccinations had significantly higher odds of being vaccinated against both influenza and pertussis (OR 33.3, 95% CI: 15.15–73.38). Of unvaccinated mothers, 53.6% (95% CI: 45.9–61.3) and 78.3% (95% CI: 70.4–85.3) reported that they would have been vaccinated against influenza and pertussis, respectively, if their antenatal care provider had recommended it. Conclusions: Pertussis vaccination coverage was high in the first year of an antenatal immunisation program in Western Australia. Despite a substantial increase in influenza vaccination uptake between 2014 and 2015, coverage remained below that for pertussis. Our data suggest influenza and pertussis vaccination rates of 83% and 94%, respectively, are achievable if providers were to recommend them to all pregnant women

    Bright excitons in monolayer transition metal dichalcogenides: from Dirac cones to Dirac saddle points

    Full text link
    In monolayer transition metal dichalcogenides, tightly bound excitons have been discovered with a valley pseudospin that can be optically addressed through polarization selection rules. Here, we show that this valley pseudospin is strongly coupled to the exciton center-of-mass motion through electron-hole exchange. This coupling realizes a massless Dirac cone with chirality index I=2 for excitons inside the light cone, i.e. bright excitons. Under moderate strain, the I=2 Dirac cone splits into two degenerate I=1 Dirac cones, and saddle points with a linear Dirac spectrum emerge in the bright exciton dispersion. Interestingly, after binding an extra electron, the charged exciton becomes a massive Dirac particle associated with a large valley Hall effect protected from intervalley scattering. Our results point to unique opportunities to study Dirac physics, with exciton's optical addressability at specifiable momentum, energy and pseudospin. The strain-tunable valley-orbit coupling also implies new structures of exciton condensates, new functionalities of excitonic circuits, and possibilities for mechanical control of valley pseudospin

    Microscopic Polarization in Bilayer Graphene

    Full text link
    Bilayer graphene has drawn significant attention due to the opening of a band gap in its low energy electronic spectrum, which offers a promising route to electronic applications. The gap can be either tunable through an external electric field or spontaneously formed through an interaction-induced symmetry breaking. Our scanning tunneling measurements reveal the microscopic nature of the bilayer gap to be very different from what is observed in previous macroscopic measurements or expected from current theoretical models. The potential difference between the layers, which is proportional to charge imbalance and determines the gap value, shows strong dependence on the disorder potential, varying spatially in both magnitude and sign on a microscopic level. Furthermore, the gap does not vanish at small charge densities. Additional interaction-induced effects are observed in a magnetic field with the opening of a subgap when the zero orbital Landau level is placed at the Fermi energy

    Entanglement of single-photons and chiral phonons in atomically thin WSe2_2

    Full text link
    Quantum entanglement is a fundamental phenomenon which, on the one hand, reveals deep connections between quantum mechanics, gravity and the space-time; on the other hand, has practical applications as a key resource in quantum information processing. While it is routinely achieved in photon-atom ensembles, entanglement involving the solid-state or macroscopic objects remains challenging albeit promising for both fundamental physics and technological applications. Here, we report entanglement between collective, chiral vibrations in two-dimensional (2D) WSe2_2 host --- chiral phonons (CPs) --- and single-photons emitted from quantum dots (QDs) present in it. CPs which carry angular momentum were recently observed in WSe2_2 and are a distinguishing feature of the underlying honeycomb lattice. The entanglement results from a "which-way" scattering process, involving an optical excitation in a QD and doubly-degenerate CPs, which takes place via two indistinguishable paths. Our unveiling of entanglement involving a macroscopic, collective excitation together with strong interaction between CPs and QDs in 2D materials opens up ways for phonon-driven entanglement of QDs and engineering chiral or non-reciprocal interactions at the single-photon level

    Characterisation of CCT271850, a selective, oral and potent MPS1 inhibitor, used to directly measure in vivo MPS1 inhibition vs therapeutic efficacy

    Get PDF
    BACKGROUND: The main role of the cell cycle is to enable error-free DNA replication, chromosome segregation and cytokinesis. One of the best characterised checkpoint pathways is the spindle assembly checkpoint, which prevents anaphase onset until the appropriate attachment and tension across kinetochores is achieved. MPS1 kinase activity is essential for the activation of the spindle assembly checkpoint and has been shown to be deregulated in human tumours with chromosomal instability and aneuploidy. Therefore, MPS1 inhibition represents an attractive strategy to target cancers. METHODS: To evaluate CCT271850 cellular potency, two specific antibodies that recognise the activation sites of MPS1 were used and its antiproliferative activity was determined in 91 human cancer cell lines. DLD1 cells with induced GFP-MPS1 and HCT116 cells were used in in vivo studies to directly measure MPS1 inhibition and efficacy of CCT271850 treatment. RESULTS: CCT271850 selectively and potently inhibits MPS1 kinase activity in biochemical and cellular assays and in in vivo models. Mechanistically, tumour cells treated with CCT271850 acquire aberrant numbers of chromosomes and the majority of cells divide their chromosomes without proper alignment because of abrogation of the mitotic checkpoint, leading to cell death. We demonstrated a moderate level of efficacy of CCT271850 as a single agent in a human colorectal carcinoma xenograft model. CONCLUSIONS: CCT271850 is a potent, selective and orally bioavailable MPS1 kinase inhibitor. On the basis of in vivo pharmacodynamic vs efficacy relationships, we predict that more than 80% inhibition of MPS1 activity for at least 24 h is required to achieve tumour stasis or regression by CCT271850
    • …
    corecore