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1 Introduction

In the production of integrated circuits, the miniaturization
of devices and the rapid increase in integration density have
led to the development of resolution enhancement tech-
niques(RETS in lithography! Examples include modified
illuminatior®® (such as annular, dipole and quadrupole il-
lumination, an alternating phase-shifting maskPSM),

and an attenuated PSi{Ref. 5. An alternating PSM is one

of the RETSs that offers superior image quality for printing
small and dark features. Making use of the destructive in-
terference of light rays that are 180 deg out of phase, alter-
nating PSMs are capable of both light-field and dark-field
applications. Linewidth as low as 0.1 has been achi&ved

using alternating PSMs.

Current issues such as image intensity imbalance, aber-
ration sensitivity, and mask defects present a challenge to
the design of alternating PSMs. We focus on aberration
sensitivity in this paper. Aberration is the departure from
sphericity of image-forming light rays. There has been an
extensive study on the relationship between aberration and
PSMs. For example, spherical aberration is fdutal de-
grade the depth of focuoF) of semirandomly aligned
patterns printed by alternating PSMs. Coma, on the other
hand, causésritical dimension(CD) asymmetry in multi-

Abstract. The aberration present in the lenses of exposure systems can
cause placement errors to the images produced by alternating phase-
shifting masks (PSMs). In reality, when the aberration signature varies
from one lens to another, the magnitude of placement error also varies. It
remains a question of how the alternating PSM should be designed, so
that the image placement error, on average, can be minimized. To
achieve this goal, we are interested in optimizing the phase width of an
alternating PSM with a fixed critical dimension (CD). The constraint of
the optimization is the mean of root mean square (rms) aberrations for a
set of interest of exposure systems. To begin the analysis, the image
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nating PSMs incur less intrafield linewidth variations than
conventional chromium-on-glag€oG) masks’ they gen-
erally result® in higher image placement errdi.e., the
lateral shift of printed featurgslt is thus necessasry to
design an alternating PSM that is less susceptible to image
placement error.

From our previous study, the image placement error can
be expressed as a function of effective light source, photo-
mask structure, and wave aberratidiThe formula enables
us to predict the image placement error incurred by a par-
ticular exposure system. Given that the exposure system is
unchanged, we can use the formula to optimize the alter-
nating PSM easily. However, in the real world, there are
many types of exposure tools. Each of them has a different
aberration signature and produces varying degree of image
placement errofFig. 1). A mask optimized for one expo-
sure tool may not be optimized for another. It is also cost-
ineffective and time-consuming to redesign the mask when
a new exposure system is installed. Therefore, it is our
interest to optimize the alternating PSM so that the image
placement error can be minimized in the average sense. To
limit the scope of the problem, we consider an alternating
PSM with symmetric 0- and 180-deg phase regi@resns-
parent regionsand a fixed CD(the width of the opaque
line between the two transparent regipfsig. 2). We aim

phase PSMs. Although it has been demonstrated that alter-; optimizing the width of the phase regiofteereafter as

1537-1646/2005/$22.00 © 2005 SPIE
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phase width The constraint of the optimization is the
mean of root mean squafems) aberrations for an inter-
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Mean of {Ry, Rz, ... ., Ru} = Hr
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Fig. 1 lllustration of the optimization problem.
ested set of exposure systetkgy. 1). Coherent imaging is
assumed here to simplify the analysfs.

2 Theory

2.1 Wave Aberration and rms Aberration

To begin, we take a closer look at how aberration is ex-
pressed mathematically. Figure 3 shows the formation of a

point image. Without aberration, all transmitted light rays
converge to the point image, . Taking P, as the center, a
spherical wavefront is formed at the exit pugl This
wavefront is called Gaussian reference spttere

When aberration is present, the light rays no longer con-
verge to a single point on the image plane. The aberrated

wavefrontW at the exit pupil deviates from the surfae
The o nPtlcal path differencéOPD) betweenW and S is
known™ as the wave aberratich. Since® can be regarded
as a surface over the exit pud, it is possible to use
polynomials to fit this surface. The most common candi-
dates are Zernike polynomials. Let; denote thei’'th
Zernike polynomial(rms normalizeyl and C; is the i'th
Zernike coefficient. Sufficient for current lithographic ap-
plications,{Cs,...,C37} is chosen to express the wave ab-
erration® in this paper. The wave aberration at an arbitrary
point (f,g) on planeE is then given by

37

cb(f,g>=i=25 Cizi(f,9). (1)

[Note that §,g) are normalized by/k, wherer is the
distance from the center of the object iad) andk is the
propagation number of the light raydn Fourier optics,

180°

-

Exit pupil &

Aberrated -7
wavefront 7,/
i

Gaussian
reference sphere 5

Image plane

Fig. 3 Image formation by light rays from Gaussian reference
sphere S and aberrated wavefront W.

(f,g) are called spatial frequencies and the points on the
image plane are callédspatial coordinatesx(y). Follow-
ing the convention of projection lithography, the spatial fre-
guencies are normalized BNA/N), while the spatial coor-
dinates are normalized byA/NA), where NA is the
numerical aperture, and is the wavelength. In the subse-
qguent discussion, this is denoted by a caret ¢ver the
corresponding variables.

The rms aberratioR is defined in terms of the Zernike
coefficients as

37 1/2
R= ( > c?) :
=5

This parameter characterizes the overall wavefront quality
of an exposure system. From E®), we can see that one
set of Zernike coefficients corresponds to one valu®.of
Different exposure systems have different sets of Zernike
coefficients. When the number of exposure systems be-
comes very large, each Zernike coefficient can be treated as
a continuous random variable with unknown probability
density functiongpdfs). Since there is not much statistical
research on how the Zernike coefficients are distributed in
exposure systems, each coefficient is modeled as an inde-
pendent, normally distributed random variable with zero
mean and nonzero varianeg, i.e., C;~N(0,02) for 5
<i<37. It implies that the aberration present in various
exposure systems is most likely very small. With this as-
sumption,R? becomes g?2 random variable witm degrees

of freedom!® The given mean value of rms aberrations in
our constraint is the population meanRfdenoted agg).
Sinceug is given by’

)

T[1/2(n+1)]
T(1/2n)

MR= \/EUC ©)

where n is the number of normal random variables (
=33 in our casg andI'(p) is the gamma function, andg,
is

Phase width 5 CD  Phase width & nrl'(16.5 @)
O=——.
Fig. 2 Model of alternating PSM. ¢ \/EF(17)
J. Microlith., Microfab., Microsyst. 013008-2 Jan—Mar 2005/Vol. 4(1)



Mak et al.: Alternating phase-shifting mask design . . .

2.2 Image Placement Error Formula where

To facilitate the optimization, we must express the image —_
placement error as a function of effective light source, 1-D D,y S) Im[OX(fl S)]Re[ox(fz—fs)]
mask spectrum, and wave aberratiDNote that the alter- .

nating PSM is a mask with features that vary in one dimen- - Re[()x(%l_?S)]|m[6x(f2_fs)],
sion only. A photomask with mask features varying in xhe
direction can be represented only by the mask transmission_ - = . = = 2
function O(X). This function defines the amplitude and Sifs) =REO(T1 =19 IRGO(T2 = T5)]
phase of the transmitted light wave at every poinkoThe n Im[?) (?1—f5)]lm['6 (]22_;5)].

mask spectrun@x(f) is the Fourier transform of the mask ) ) ) o
transmission function, where the tilde")( denotes a  BY expanding Eq(9) into Taylor series and retaining the

frequency-domain functiohLet the image placement error first-order terms, we have

be AX. Also let the effective light source h#{f.,q.), let - . N A
fective lig PRIs.0 10 A p T olcos2mn) — 2T osin2m iK1 - SilTo)
the mask spectrum b@,(f), and let the wave aberration

be ®(f,§). The image intensity is given by X[sin(2m 1) +27f 150427 d12)X]. (10
A PRSP Substituting Eq(10) into Eq. (8) and putting the resulting
()= JII(fs,99)1s(fs;X)df s dgs ®) equation into Eq(6), we get a linear equation & Solving
ffSJ(fSags)dfsdgs , for )A(:
where K= ffSJ(fSygs)M(%s)d?sd@s (11)
JIS3(fs,g9N(f5)dfsdgs

- 1 l—~ . A= A ~
o= [ [ B 18s -1

Xexg —i2m(f1 X+ pyp)]df, df 5,

where

~ 1 1 ~
M(fs)=f_1ff [DixAfs)cog2m 1)
fro=f,—f,; and ¢,=®(f;,0)—®(f,,0). By setting : o
di/dx=0, we have — S fo)sin2m ) T 1,df  df,,

~ 1 1 ~
[ [ ip0ca.r00di 0. ©  Nio=27 | [Duiosinzee
- 2

+S1o(fo)COL 2 ehy,) |T2,df 1 df 5.

We can writel (f5,X) as Without loss of generality, the image intensity extremum is

assumed to exist at=0. Equation(11) is then equivalent

~ 1 = . . ~
|S(fs,§():J’ |Ox(f—fs)|2df to the image placement erraix. . .
-1 We can simplify the equation by noting the following

1 (e . o— points. In coherent imaging)(fs,ds)=d(fs,0s), where
+2 RBU J x(f1=f9)O) (fa—Ty) 8(fs,0s) is the 2-D Dirac delta function. Equatidil) is

then reduced to

xexq—izm?uﬂ¢12>]df1d?2], W) . M(0)

AX= NOR (12

where R¢- n he real part ¢f). Then . . L
ere R¢-) denotes the real part ¢f) en Furthermore, taking a thin mask approximation, where

there is no transmission or phase error in the phase regions,
__47TJ J Im{O s)O* }S) the mask spectrum of an alternating PSM with phase width

§ and critical dimension Cls a purely imaginary function:
Xexp[—i277(f12x+¢12)]}f12df1df2, (8)

-~ ~ |2 ~ ~A e~

O,(f)= —sin(xrfs)sin #f(CD+5)], (13
where In(-) denotes the imaginary part @f). Denoting & wf " sl ]
Im(-) in Eq. (8) asA, A can be simplified as
wherei=—1. With this spectrum, the factdd,,(0) in

A= DlZ(%s)COiZW(%lzg(_{' $19)] the numerator and the denominator of EtR) is reduced
. . to zero. The image placement error formula is now given
=Sy fg)sin 2m(f X+ 1], 9) by

J. Microlith., Microfab., Microsyst. 013008-3 Jan—Mar 2005/Vol. 4(1)
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Table 1 Parameters in Monte Carlo analysis.

Wavelength (\) 248 nm (KrF laser)

NA 0.68
CD 0.3(\/NA)
Mean rms aberration 0.025\
Number of trials 10,000

(i.e., number of exposure systems)

TR S O)sin2m i) Tpdi df
X= = = .
21 1 SiA0)cos 2m by, df

(14)

Note that the value ohx can be either positive or nega-
tive, which represents a shift toward thex or —X direc-
tion, respectively. Since we are interested in only the abso-
lute amount of image placement error in our optimization,
we ignore the sign oAX and considefAX| instead. Alter-
natively, we can also consider the quantityx)2. The rea-
son why (AX)? is considered is further explained in Sec. 4.

Due to the randomness of Zernike coefficients, the
placement error becomes a random quanitgreafter as
AX, with capital letter meaning random variaplé phase
width optimized for a particular combination of Zernike
coefficients may not be optimal for another combination.
This makes it necessary to perform the optimization in an
average sense. Monte Carlo analysis is our first attempt to
determine the relationship between mean image placemen
error and phase width. This is described in the next section.

3 Monte Carlo Analysis
The aim of Monte Carlo analysis on Zernike coefficients is

t

Sample mean of absolute placement error (nm)

2
Phase width (\/NA)

3

L
15 25 35 4.5

Fig. 4 Sample mean of |AX| as a function of $ for 0.1<$<5.

4 Expected Placement Error and Optimal Phase
Width

The encouraging results from Monte Carlo analysis prompt
for a theoretical way in obtaining the optimal phase width.
To this end, it is natural to consider the expected value of
|AX| [denoted byE(|AX|), where E(-) stands for ex-
pected value operatignHowever, without knowing the pdf
of AX, itis a daunting task to determine its expected value.
This is because from the mathematical point of view, ex-
pectation is an integral, but the absolute value operation is
nonlinear. It is not possible to interchange the order of ex-
pectation and absolute value operation, E¢JAX]) is not
identical to|E(AX)].

To overcome this problem, we consider the expected

to obtain some preliminary evidence on the existence of value of (AX)? instead. It is possible to determine

global minimum of average placement error at certain g[(AX)2] without knowing the pdf oAX. The idea is as
phase width. The results underscore the possibility of the- fo||ows. Referring to Eq(14), we note that both the nu-

oretical analysis in the subsequent sections. merator and the denominator dependdys, which is the
The parameters used in the simulation are listed in Table

1. In the analysis, the mean rms aberration is taken to be
0.025\. This is suggested in Ref. 18 as a guideline for
lithographers to achieve the best-quality wavefront control.
Using Eq.(4), the pdf of each coefficient is found to be
N(0,1.922810 °\?).

In each trial of Monte Carlo analysis, a set of Zernike
coefficients is randomly sampled according to the normal
distribution just mentioned. By substituting the coefficients
(i.e., the wave aberratiod®) into Eq.(14), we get a sample
of |AX| and a sample of AX)? as functions ofS. After
taking 10,000 trials in the simulation, the sample means of
|AX| and (AX)? [without normalization by(\/NA)] are
plotted against the phase width in Figs. 4 and 5. Observing
the two plots, we see that there is remarkable similarity in
the shape of the plots. They both peaksat1(\/NA).
Besides, both plots have their global minima occurring be-
tween s=0.2(\/NA) and 0.4\/NA). The optimal phase
width is likely to lie in this range. In Sec. 4, we return to
our image placement error formulas to obtain the optimal
phase width analytically.

140

-3 o =) X
=) S =] S

Sample mean of squared placement error (nmz)

&
S

20

25
Phase width (AVNA)

Fig. 5 Sample mean of (A X)? as a function of § for 0.1<$<5.
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—eo— Original
—-» Linearized

o
S

b

—o— Original
—-» Linearized

m

=

S
L

Sample mean of absolute placement error (nm)
Sample mean of squared placement error (n

1 1 1 1 1 1 1 1 1
3 L L L L ! L L L L 0 05 1 15 2 25 3 35 4 45 5

0 05 1 1.5 2 25 3 35 4 45 5 .
Phase width (A/NA) Phase width (\/NA)

Fig. 7 Comparison between the sample means of (AX)? and its

Fig. 6 Comparison between the sample means of |AX| and its lin- . ' )
linearized version.

earized version.

f171f}12512(0)5in(277¢12)%12d%1 d%z ?

27Tf£1f%2$12(0)a(?1,%2)%%2(:1?1 df,

difference of the wave aberration function values evaluated (Af()zz

at (f4,0) and (,,0). The statistical parameters ¢f, (e.g.,
mean, \_/ariance, eficcan be determ.ined from the means 1 (L (171 1
and variances of the Zernike coefficients. If the_expectatlon :_f ﬁ f ﬁ S,5(0)S34(0)SiN(27 1)
can be performed onp,,, then our problem is mostly KJ-1Jy,J-1J5

solved. The difficulty here is that Eq14) is a nonlinear
operation ongq,. With ¢, in the denominator, the order
of expectation and the double integral in the numerator can-
not be interchanged. To linearize Ed4), i.e., to remove
the dependence o4, in the denominator, the following
empirical approximation has been made to casgfg) in

the denominator of Eq.14):

X SIN( 277 hag) T 1o 34 dF 1 dF o df 5 f 4, (16)

whereK is the denominator of the first step of E({.6).
Note thatK does not depend on the wave aberration

The integrand of Eq(16) is continuous for all indepen-
dent variables present in it. The order of expectation and
integration can thus be interchanged. This is shown as fol-

lows:
A A Soo 1 (1 (11 (1 _
cog2mpr)~a(fy,fr) E[(AX)"]=E KJ Jf J lJ} S$120)S34(0)siN(27 b1 2)
~ - - 4 2
_|0.89 0.95<|f4|<1 or 0.955|f,/<1
B 0.98 Otherwise_ XSirKZW¢34)f12f34df1 df2 df3 df4j|
(19 1 (1 (11 (1 )
~o | L] | suosuoersinzs
-1ty J-1J%,
The numbers in Eq(15) are estimated from the sample ><sin(277¢34)]?12?34d?1 d?z d?3 d?4
mean and sample variance of cos?, (number of L orir1 1
samples=10,000Q. Their validity is verified by means of :if J f J S,5(0)S4(0)
Monte Carlo analysis. All the parameters are the same as 2K J 1)y )1 3,7 !
those in Table 1. We compare the sample meafAof|
~ X E{cog 2 - —cog?2
obtained from Eq(14) and the linearized version ¢AX|, {cog AW(A¢12A ¢3A4)]A AS{ (1
as well as the sample mean ofX)? and its linearized + ¢3a) ]} F1of 34 df 1 df  df 5 df,
version. The results are shown in Figs. 6 and 7. In general, 1 (1 (11 (1
the plots from the linearized equations match the plots from :_f J J f S12(0)S34(0)
the original equations. The match is better for low phase 2K )1ty )1l
widths (0<s=<1).
A X(E{cog?2 - —E{cog2
With the linearization, 4X)? can be expanded in the (E S{A WA((MZA <ii34)]A} A{ 12m( 1z
following manner: + 30 1}) F1of 34df { df , df 5 df 4. a7

J. Microlith., Microfab., Microsyst. 013008-5 Jan—Mar 2005/Vol. 4(1)



Mak et al.: Alternating phase-shifting mask design . . .

The expected values of the two cosine functions in(Ead)

expliaY)+exp —iaY)
must be evaluated. First, we consider the pdf ¢f,{  E(cosaY)=E

2
—¢3d and (piot ¢3g). Since Ci~M007) for all i,
®(f,8) ~M0.023:[Z(1,8)19). Hence, (1~ b3 and L ErexpiaY)]+ E[exp(—iaY)])
(1ot Pas) are also normally distributed, with the mean 2
and variance as 1 _ alg? _ a2o?
=5|expiau— ——|—exg —iau— —
E(¢1— ¢34):E[2 Ci(zil_zi2_2i3+zi4)} a2o?
[ =exp — 5 cosau, (19

:Ei (Zi1=Ziz=Ziz+ Zi)) B(C) =0, where a is a constant. By substituting=2m, Y= ¢,

— ¢h34 (OF P12t h34), We have

E(piot das) = E{E Ci(Zi1—Zip+ Zi3_zi4)} E{co§2m( 1o~ dsa) [} =exd — 272 var ¢1o— hz4) ]
i X 04 2TE(d12— ¢34)]
= (Zir—Zir+Zis—Zig)E(C) =0, =exp(— 2720 P13,
: (20
E{cod 2m( 1o+ daa) ]} =exd — 272 var ot b3q)]
var i ¢34)=var{2 Ci(zil—ziz—zi3+zi4>} X Co§2mE(P1ot Pd)]
I =exp(—27720'§Q1234).
=2, (Zi=Zig=Zigt Zia) var(Cy) Finally, E[(AX)?] is given by
G E[(AX)?]= 21
[( )]_87728’ (21)
var( ¢+ ¢34):Va’[§i: Ci(zil_zi2+zi3_zi4)} where
1 11 1
=S (Zu-Zip+ Zis— 219 var(Cy) A= L] | sosuoren-27202p1za0
i -1JfJ-1J1
=07Q1234, — expl( — 27202Q1930 1T 1ot 54 dlf dif » df 5 if 4,
herez; =Z,(:,0), forj = S SR
whereZ;;=2(f;,0), forj=1, 2, 3, 4, and B:[flf} SiA0)ar(fy,F,)F2,df df 5| .
p1234zz (Zi1—Zin—Ziz+Zi2)?% The essence of Eq21) is thatE[(Af()Z] is a function

of two parameters only—the phase widthand the vari-
ance of the Zernike coefficients?:

Quos= X (Zin—Zix+Ziz—Zis)% E[(AX)?]=u(§,02). (22
_ _ _ _ This is a very pleasant result becausie is related to the
i.e., functions of the Zernike polynomials only. mean rms aberration by E@4). In other words, given a

_Back to our original problem in Eq17), we must con-  erain mean rms aberratio[ (AX)2] depends on the
sider the expected value of the cosine of a normal random phase width only.

i - 2 ; ) -
variable. LetY~N{u,0°). The moment generating func In Fig. 8, the values oE[(AX)2] computed from the

. . 19

tion of Y is Monte Carlo analysis of Eq14) and those computed from
Eq. (21) are plotted. A similar plot with the linearized ver-

ot? sion is shown in Fig. 9. This is done to show the validity of

E(etY)=eXD( pt+ T) (18 Eq. (21). In both figures, the results generally follow the
same trend, with better agreement at low phase widths.
Since we are interested in only low phase widths, @4)

for any complext. Then, remains valid.

J. Microlith., Microfab., Microsyst. 013008-6 Jan—Mar 2005/Vol. 4(1)
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180

—o— Sample mean
-~ E[aX)]

160

Mean of squared placement error (nm2)

3
Phase width (VNA)

35 45

Fig. 8 Comparison between the sample mean of (AX)? obtained
from the Monte Carlo analysis of Eq. (14) and E[ (A X)?] from Eq.
(22).

Optimal phase width (A/NA)

hifting mask design . . .

0.4

0.35

o
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o
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<
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e
@

0.1

0.02

0.04

0.01 0.05 0.06

0.03
RMS aberration (1)

Fig. 10 Optimal phase width as a function of rms aberration;
=0.3(\/NA).

tra are, in general, complex functions with nonzero real

Equipped with Eq(21), we can use numerical methods
to determine the position of the global minimum. We do no
proceed with the differentiation of EG21) with respect to
S, because Eq21) is still a complicated function a. We
chose the Golden Section Search method for its quick con-
vergence. The range of search is limited ts ©<1. After
iterations, the optimal phase width is found to be 0.3217
NA) (i.e., approximately 117 njmat 0.025. mean rms ab-
erration. The optimal phase width as a function of mean
rms aberration is also plotted in Fig. 10. This curve shows
that the optimal phase width decreases with increasing ab-
erration level.

t

5 Discussion

There are several points to note in the foregoing analysis.
First, the theory can be extended to any masks whose spec

180

—o— Sample mean
- E[aX)]

160

Mean of squared placement error (nm2)

2 215 3
Phase width (WNA)

35 45

Fig. 9 Comparison between the sample mean of (AX)? obtained
from the Monte Carlo analysis of the linearized Eq. (14) and
E[(AX)?] from Eq. (21).

J. Microlith., Microfab., Microsyst.
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parts. Examples include symmetric alternating PSMs with
phase error in the phase shifters and asymmetric alternating
PSMs. The method is briefly outlined as follows. By con-

sidering Eq.(14) again, we can see that if @(?—fs)]

#0, D15(fs) #0. By retainingD 15(fs) in the derivation, we
can arrive at a new and more complicated expression for
E[(AX)?]. This expressions helps us to analyze the aber-
ration sensitvity for any mask patterns under coherent im-
aging. A A

Second, without taking(fs,gs) = &(fs,0s), the theory
can also be extended from coherent imaging to a general
imaging condition, such as partially coherent imaging and
other modified illuminations. Together with the first point, a
theory applied to any mask patterns and any light sources
can be obtained.
Finally, the optimality of phase width is also determined
by the necessity to maintain adequate image quality for CD
control. Figure 11 plots the simulated exposure latitude of a
0.3(\/NA) line as a function of phase width. The exposure
latitude decreases from 30 to 18% as the phase width de-
creases from O@/NA) to 0.1\/NA). A trade-off exists
between placement sensivity and process window. A manu-
facturable process requires at least a 15% exposure
latitude?® If this requirement is tightened, the optimal
phase width should be adjusted accordingly.

6 Summary

Optimization was performed on the phase widths of alter-
nating PSMs. The aim is to minimize the mean image
placement error toward aberration under coherent imaging.
The constraint was a given mean rms aberration for a set of
exposure systems. We first expressed the image placement
error as a function of effective light source, mask spectrum,
and wave aberration. By randomly generating wave aberra-
tions that conform to our constraint, we performed Monte

Carlo analysis to the absolute image placement g

and the square of placement errdrX)?. From the results
of the Monte Carlo analysis, on average, a global minimum
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Fig. 11 Exposure latitude of a 0.3(A/NA) line printed with alternating
PSM increases with phase width. The image was simulated with

partial coherence factor=0.5, and CD=0.3(A/NA).

of placement error is likely to occur at a phase width be-

tween 0.2\/NA) and 0.4\/NA). By the theoretical consid-
eration of the expected value oAK)?, the optimal phase

width of alternating PSM is obtained as a function of mean
rms aberration. The results are generally applicable to the

design of all alternating PSMs.
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