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Abstract. The aberration present in the lenses of exposure systems can
cause placement errors to the images produced by alternating phase-
shifting masks (PSMs). In reality, when the aberration signature varies
from one lens to another, the magnitude of placement error also varies. It
remains a question of how the alternating PSM should be designed, so
that the image placement error, on average, can be minimized. To
achieve this goal, we are interested in optimizing the phase width of an
alternating PSM with a fixed critical dimension (CD). The constraint of
the optimization is the mean of root mean square (rms) aberrations for a
set of interest of exposure systems. To begin the analysis, the image
placement error is expressed as a function of illumination, mask spec-
trum, and wave aberration. A Monte Carlo technique is then applied to
produce random samples of wave aberration and image placement error.
This analysis shows that a global minimum of mean image placement
error is likely to occur at phase widths between 0.2[l/numerical aperture
(NA)] and 0.4(l/NA). This is further confirmed by analytically considering
the expected value of the square of the image placement error. The
methodology of finding the optimal phase width is applicable to the de-
sign of all alternating PSMs. © 2005 Society of Photo-Optical Instrumentation En-
gineers. [DOI: 10.1117/1.1861732]
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1 Introduction

In the production of integrated circuits, the miniaturizati
of devices and the rapid increase in integration density h
led to the development of resolution enhancement te
niques~RETs! in lithography.1 Examples include modified
illumination2,3 ~such as annular, dipole and quadrupole
lumination!, an alternating phase-shifting mask4 ~PSM!,
and an attenuated PSM~Ref. 5!. An alternating PSM is one
of the RETs that offers superior image quality for printin
small and dark features. Making use of the destructive
terference of light rays that are 180 deg out of phase, a
nating PSMs are capable of both light-field and dark-fi
applications. Linewidth as low as 0.1 has been achiev6

using alternating PSMs.
Current issues such as image intensity imbalance, a

ration sensitivity, and mask defects present a challeng
the design of alternating PSMs. We focus on aberrat
sensitivity in this paper. Aberration is the departure fro
sphericity of image-forming light rays. There has been
extensive study on the relationship between aberration
PSMs. For example, spherical aberration is found7 to de-
grade the depth of focus~DoF! of semirandomly aligned
patterns printed by alternating PSMs. Coma, on the o
hand, causes8 critical dimension~CD! asymmetry in multi-
phase PSMs. Although it has been demonstrated that a
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nating PSMs incur less intrafield linewidth variations th
conventional chromium-on-glass~CoG! masks,9 they gen-
erally result10 in higher image placement error~i.e., the
lateral shift of printed features!. It is thus necessasry to
design an alternating PSM that is less susceptible to im
placement error.

From our previous study, the image placement error
be expressed as a function of effective light source, pho
mask structure, and wave aberration.11 The formula enables
us to predict the image placement error incurred by a p
ticular exposure system. Given that the exposure syste
unchanged, we can use the formula to optimize the al
nating PSM easily. However, in the real world, there a
many types of exposure tools. Each of them has a differ
aberration signature and produces varying degree of im
placement error~Fig. 1!. A mask optimized for one expo
sure tool may not be optimized for another. It is also co
ineffective and time-consuming to redesign the mask wh
a new exposure system is installed. Therefore, it is
interest to optimize the alternating PSM so that the ima
placement error can be minimized in the average sense
limit the scope of the problem, we consider an alternat
PSM with symmetric 0- and 180-deg phase regions~trans-
parent regions! and a fixed CD~the width of the opaque
line between the two transparent regions! ~Fig. 2!. We aim
at optimizing the width of the phase regions~hereafter as
phase width!. The constraint of the optimization is th
mean of root mean square~rms! aberrations for an inter-
-1 Jan–Mar 2005/Vol. 4(1)
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Fig. 1 Illustration of the optimization problem.
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Fig. 3 Image formation by light rays from Gaussian reference
sphere S and aberrated wavefront W.
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ested set of exposure systems~Fig. 1!. Coherent imaging is
assumed here to simplify the analysis.12

2 Theory

2.1 Wave Aberration and rms Aberration

To begin, we take a closer look at how aberration is
pressed mathematically. Figure 3 shows the formation
point image. Without aberration, all transmitted light ra
converge to the point imagePI . Taking PI as the center, a
spherical wavefront is formed at the exit pupilE. This
wavefront is called Gaussian reference sphereS.

When aberration is present, the light rays no longer c
verge to a single point on the image plane. The aberra
wavefrontW at the exit pupil deviates from the surfaceS.
The optical path difference~OPD! betweenW and S is
known13 as the wave aberrationF. SinceF can be regarded
as a surface over the exit pupilE, it is possible to use
polynomials to fit this surface. The most common can
dates are Zernike polynomials. LetZi denote thei’th
Zernike polynomial~rms normalized!, and Ci is the i’th
Zernike coefficient. Sufficient for current lithographic a
plications,$C5 ,...,C37% is chosen to express the wave a
errationF in this paper. The wave aberration at an arbitra
point (f ,g) on planeE is then given by14

F~ f ,g!5(
i 55

37

CiZi~ f ,g!. ~1!

@Note that (f ,g) are normalized byr /k, where r is the
distance from the center of the object to (f ,g) andk is the
propagation number of the light rays.# In Fourier optics,
(

( f ,g) are called spatial frequencies and the points on
image plane are called15 spatial coordinates (x,y). Follow-
ing the convention of projection lithography, the spatial fr
quencies are normalized by~NA/l!, while the spatial coor-
dinates are normalized by~l/NA!, where NA is the
numerical aperture, andl is the wavelength. In the subse
quent discussion, this is denoted by a caret (ˆ ) over the
corresponding variables.

The rms aberrationR is defined in terms of the Zernike
coefficients as

R5S (
i 55

37

Ci
2D 1/2

. ~2!

This parameter characterizes the overall wavefront qua
of an exposure system. From Eq.~2!, we can see that one
set of Zernike coefficients corresponds to one value ofR.
Different exposure systems have different sets of Zern
coefficients. When the number of exposure systems
comes very large, each Zernike coefficient can be treate
a continuous random variable with unknown probabil
density functions~pdfs!. Since there is not much statistica
research on how the Zernike coefficients are distributed
exposure systems, each coefficient is modeled as an i
pendent, normally distributed random variable with ze
mean and nonzero variancesc

2, i.e., Ci;N(0,sc
2) for 5

< i<37. It implies that the aberration present in vario
exposure systems is most likely very small. With this a
sumption,R2 becomes ax2 random variable withn degrees
of freedom.16 The given mean value of rms aberrations
our constraint is the population mean ofR ~denoted asmR).
SincemR is given by17

mR5A2sc

G@1/2~n11!#

G~1/2n!
, ~3!

where n is the number of normal random variablesn
533 in our case!, andG(p) is the gamma function, andsc
is

sc5
mRG~16.5!

A2G~17!
. ~4!
Fig. 2 Model of alternating PSM.
-2 Jan–Mar 2005/Vol. 4(1)
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Mak et al.: Alternating phase-shifting mask design . . .
2.2 Image Placement Error Formula

To facilitate the optimization, we must express the ima
placement error as a function of effective light source, 1
mask spectrum, and wave aberration.@Note that the alter-
nating PSM is a mask with features that vary in one dim
sion only. A photomask with mask features varying in thex̂
direction can be represented only by the mask transmis
function Ôx( x̂). This function defines the amplitude an
phase of the transmitted light wave at every point ofx̂. The

mask spectrumÕ̂x( f̂ ) is the Fourier transform of the mas
transmission function, where the tilde (˜ ) denotes a
frequency-domain function.# Let the image placement erro
be D x̂. Also let the effective light source beJ( f̂ s ,ĝs), let

the mask spectrum beÕ̂x( f̂ ), and let the wave aberratio
be F( f̂ ,ĝ). The image intensity is given by

I ~ x̂!5
**SJ~ f̂ s ,ĝs!I s~ f̂ s ; x̂!df̂ s dĝs

**SJ~ f̂ s ,ĝs!df̂ s dĝs

, ~5!

where

I s~ f̂ s ,x̂!5E
21

1 E
21

1

Õ̂x~ f̂ 12 f̂ s!Õ̂x* ~ f̂ 22 f̂ s!

3exp@2 i2p~ f̂ 12x̂1f12!#df̂ 1 df̂ 2 ,

f̂ 125 f̂ 12 f̂ 2 ; and f125F( f̂ 1,0)2F( f̂ 2,0). By setting
dI /dx̂50, we have

E E
S

J~ f̂ s ,ĝs!~dI s /dx̂!df̂ s dĝs50. ~6!

We can writeI s( f̂ s ,x̂) as

I s~ f̂ s ,x̂!5E
21

1

uÕ̂x~ f̂ 2 f̂ s!u2df̂

12 ReH E
21

1 E
f̂2

1

Õ̂x~ f̂ 12 f̂ s!Õ̂x* ~ f̂ 22 f̂ s!

3exp@2 i2p~ f̂ 12x̂1f12!#df̂ 1 df̂ 2J , ~7!

where Re~•! denotes the real part of~•!. Then,

dI s

dx̂
54pE

21

1 E
f̂2

1

Im$Õ̂x~ f̂ 12 f̂ s!Õ̂x* ~ f̂ 22 f̂ s!

3exp@2 i2p~ f̂ 12x̂1f12!#% f̂ 12df̂ 1 df̂ 2 , ~8!

where Im~•! denotes the imaginary part of~•!. Denoting
Im~•! in Eq. ~8! asA, A can be simplified as

A5D12~ f̂ s!cos@2p~ f̂ 12x̂1f12!#

2S12~ f̂ s!sin@2p~ f̂ 12x̂1f12!#, ~9!
013008J. Microlith., Microfab., Microsyst.
n

where

D12~ f̂ s!5Im@ Õ̂x~ f̂ 12 f̂ s!#Re@ Õ̂x~ f̂ 22 f̂ s!#

2Re@ Õ̂x~ f̂ 12 f̂ s!#Im@ Õ̂x~ f̂ 22 f̂ s!#,

S12~ f̂ s!5Re@ Õ̂x~ f̂ 12 f̂ s!#Re@ Õ̂x~ f̂ 22 f̂ s!#

1Im@ Õ̂x~ f̂ 12 f̂ s!#Im@ Õ̂x~ f̂ 22 f̂ s!#.

By expanding Eq.~9! into Taylor series and retaining th
first-order terms, we have

A5D12~ f̂ s!@cos~2pf12!22p f̂ 12sin~2pf12!x̂#2S12~ f̂ s!

3@sin~2pf12!12p f̂ 12cos~2pf12!x̂#. ~10!

Substituting Eq.~10! into Eq. ~8! and putting the resulting
equation into Eq.~6!, we get a linear equation inx̂. Solving
for x̂:

x̂5
**SJ~ f̂ s ,ĝs!M ~ f̂ s!df̂ s dĝs

**SJ~ f̂ s ,ĝs!N~ f̂ s!df̂ s dĝs

, ~11!

where

M ~ f̂ s!5E
21

1 E
f̂2

1

@D12~ f̂ s!cos~2pf12!

2S12~ f̂ s!sin~2pf12!# f̂ 12df̂ 1 df̂ 2 ,

N~ f̂ s!52pE
21

1 E
f̂2

1

@D12~ f̂ s!sin~2pf12!

1S12~ f̂ s!cos~2pf12!# f̂ 12
2 df̂ 1 df̂ 2 .

Without loss of generality, the image intensity extremum
assumed to exist atx̂50. Equation~11! is then equivalent
to the image placement errorD x̂.

We can simplify the equation by noting the followin
points. In coherent imaging,J( f̂ s ,ĝs)5d( f̂ s ,ĝs), where
d( f̂ s ,ĝs) is the 2-D Dirac delta function. Equation~11! is
then reduced to

D x̂5
M ~0!

N~0!
. ~12!

Furthermore, taking a thin mask approximation, whe
there is no transmission or phase error in the phase regi
the mask spectrum of an alternating PSM with phase wi
ŝ and critical dimension CD̂ is a purely imaginary function:

Õ̂x~ f̂ !5
i2

p f̂
sin~p f̂ ŝ!sin@p f̂ ~CD̂1 ŝ!#, ~13!

where i 5A21. With this spectrum, the factorD12(0) in
the numerator and the denominator of Eq.~12! is reduced
to zero. The image placement error formula is now giv
by
-3 Jan–Mar 2005/Vol. 4(1)
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Table 1 Parameters in Monte Carlo analysis.

Wavelength (l) 248 nm (KrF laser)

NA 0.68

CD 0.3(l/NA)

Mean rms aberration 0.025l

Number of trials
(i.e., number of exposure systems)

10,000
*21
1 *

f̂ 2

1
S12~0!sin~2pf12! f̂ 12df̂ 1 df̂ 2

-
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- Fig. 4 Sample mean of uDXu as a function of ŝ for 0.1< ŝ<5.
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D x̂5
2p*21

1 *
f̂ 2

1
S12~0!cos~2pf12! f̂ 12

2 df̂ 1 df̂ 2

. ~14!

Note that the value ofD x̂ can be either positive or nega
tive, which represents a shift toward the1 x̂ or 2 x̂ direc-
tion, respectively. Since we are interested in only the ab
lute amount of image placement error in our optimizatio
we ignore the sign ofD x̂ and consideruD x̂u instead. Alter-
natively, we can also consider the quantity (D x̂)2. The rea-
son why (D x̂)2 is considered is further explained in Sec.

Due to the randomness of Zernike coefficients,
placement error becomes a random quantity~hereafter as
DX̂, with capital letter meaning random variable!. A phase
width optimized for a particular combination of Zernik
coefficients may not be optimal for another combinatio
This makes it necessary to perform the optimization in
average sense. Monte Carlo analysis is our first attemp
determine the relationship between mean image placem
error and phase width. This is described in the next sect

3 Monte Carlo Analysis

The aim of Monte Carlo analysis on Zernike coefficients
to obtain some preliminary evidence on the existence
global minimum of average placement error at cert
phase width. The results underscore the possibility of t
oretical analysis in the subsequent sections.

The parameters used in the simulation are listed in Ta
1. In the analysis, the mean rms aberration is taken to
0.025l. This is suggested in Ref. 18 as a guideline
lithographers to achieve the best-quality wavefront cont
Using Eq. ~4!, the pdf of each coefficient is found to b
N(0,1.922831025l2).

In each trial of Monte Carlo analysis, a set of Zerni
coefficients is randomly sampled according to the norm
distribution just mentioned. By substituting the coefficien
~i.e., the wave aberrationF! into Eq.~14!, we get a sample
of uDX̂u and a sample of (DX̂)2 as functions ofŝ. After
taking 10,000 trials in the simulation, the sample means
uDXu and (DX)2 @without normalization by~l/NA!# are
plotted against the phase width in Figs. 4 and 5. Observ
the two plots, we see that there is remarkable similarity
the shape of the plots. They both peak atŝ51(l/NA).
Besides, both plots have their global minima occurring
tween ŝ50.2(l/NA) and 0.4~l/NA!. The optimal phase
width is likely to lie in this range. In Sec. 4, we return
our image placement error formulas to obtain the optim
phase width analytically.
t
.

4 Expected Placement Error and Optimal Phase
Width

The encouraging results from Monte Carlo analysis prom
for a theoretical way in obtaining the optimal phase wid
To this end, it is natural to consider the expected value
uDX̂u @denoted byE(uDX̂u), where E(•) stands for ex-
pected value operation#. However, without knowing the pdf
of DX̂, it is a daunting task to determine its expected valu
This is because from the mathematical point of view, e
pectation is an integral, but the absolute value operatio
nonlinear. It is not possible to interchange the order of e
pectation and absolute value operation, i.e.,E(uDX̂u) is not
identical touE(DX̂)u.

To overcome this problem, we consider the expec
value of (DX̂)2 instead. It is possible to determin
E@(DX̂)2# without knowing the pdf ofDX̂. The idea is as
follows. Referring to Eq.~14!, we note that both the nu-
merator and the denominator depend onf12, which is the

Fig. 5 Sample mean of (DX)2 as a function of ŝ for 0.1< ŝ<5.
-4 Jan–Mar 2005/Vol. 4(1)
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Fig. 6 Comparison between the sample means of uDXu and its lin-
earized version.
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Fig. 7 Comparison between the sample means of (DX)2 and its
linearized version.
ˆ 2
*21

1 *
f̂ 2

1
S12~0!sin~2pf12! f̂ 12df̂ 1 df̂ 2

2

-
nd
fol-
difference of the wave aberration function values evalua
at (f̂ 1,0) and (f̂ 2,0). The statistical parameters off12 ~e.g.,
mean, variance, etc.! can be determined from the mea
and variances of the Zernike coefficients. If the expecta
can be performed onf12, then our problem is mostly
solved. The difficulty here is that Eq.~14! is a nonlinear
operation onf12. With f12 in the denominator, the orde
of expectation and the double integral in the numerator c
not be interchanged. To linearize Eq.~14!, i.e., to remove
the dependence onf12 in the denominator, the following
empirical approximation has been made to cos(2pf12) in
the denominator of Eq.~14!:

cos~2pf12!'a~ f̂ 1 , f̂ 2!

5H 0.89 0.95<u f̂ 1u<1 or 0.95<u f̂ 2u<1

0.98 otherwise.

~15!

The numbers in Eq.~15! are estimated from the samp
mean and sample variance of cos(2pf12) ~number of
samples510,000!. Their validity is verified by means o
Monte Carlo analysis. All the parameters are the same
those in Table 1. We compare the sample mean ofuDX̂u
obtained from Eq.~14! and the linearized version ofuDX̂u,
as well as the sample mean of (DX̂)2 and its linearized
version. The results are shown in Figs. 6 and 7. In gene
the plots from the linearized equations match the plots fr
the original equations. The match is better for low pha
widths (0< ŝ<1).

With the linearization, (DX̂)2 can be expanded in th
following manner:
-

s

,

~DX! 5S 2p*21
1 *

f̂ 2

1
S12~0!a~ f̂ 1 , f̂ 2! f̂ 12

2 df̂ 1 df̂ 2
D

5
1

K E
21

1 E
f̃4

1E
21

1 E
f̃2

1

S12~0!S34~0!sin~2pf12!

3sin~2pf34! f̂ 12f̂ 34df̂ 1 df̂ 2 df̂ 3 df̂ 4 , ~16!

whereK is the denominator of the first step of Eq.~16!.
Note thatK does not depend on the wave aberrationF.

The integrand of Eq.~16! is continuous for all indepen
dent variables present in it. The order of expectation a
integration can thus be interchanged. This is shown as
lows:

E@~DX̂!2#5EF 1

K E
21

1 E
f̂4

1E
21

1 E
f̂2

1

S12~0!S34~0!sin~2pf12!

3sin~2pf34! f̂ 12f̂ 34df̂ 1 df̂ 2 df̂ 3 df̂ 4G
5

1

K E
21

1 E
f̂4

1E
21

1 E
f̂2

1

S12~0!S34~0!E@sin~2pf12!

3sin~2pf34!# f̂ 12f̂ 34df̂ 1 df̂ 2 df̂ 3 df̂ 4

5
1

2K E
21

1 E
f̂4

1E
21

1 E
f̂2

1

S12~0!S34~0!

3E$cos@2p~f122f34!#2cos@2p~f12

1f34!#%• f̂ 12f̂ 34df̂ 1 df̂ 2 df̂ 3 df̂ 4

5
1

2K E
21

1 E
f̂4

1E
21

1 E
f̂2

1

S12~0!S34~0!

3~E$cos@2p~f122f34!#%2E$cos@2p~f12

1f34!#%! f̂ 12f̂ 34df̂ 1 df̂ 2 df̂ 3 df̂ 4 . ~17!
-5 Jan–Mar 2005/Vol. 4(1)
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The expected values of the two cosine functions in Eq.~17!
must be evaluated. First, we consider the pdf of (f12

2f34) and (f121f34). Since Ci;N(0,sc
2) for all i,

F( f̂ ,ĝ);N(0,sc
2S i@Zi( f̂ ,ĝ)#2). Hence, (f122f34) and

(f121f34) are also normally distributed, with the mea
and variance as

E~f122f34!5EF(
i

Ci~Zi12Zi22Zi31Zi4!G
5(

i
~Zi12Zi22Zi31Zi4!E~Ci !50,

E~f121f34!5EF(
i

Ci~Zi12Zi21Zi32Zi4!G
5(

i
~Zi12Zi21Zi32Zi4!E~Ci !50,

var~f122f34!5varF(
i

Ci~Zi12Zi22Zi31Zi4!G
5(

i
~Zi12Zi22Zi31Zi4!2 var~Ci !

5sc
2P1234,

var~f121f34!5varF(
i

Ci~Zi12Zi21Zi32Zi4!G
5(

i
~Zi12Zi21Zi32Zi4!2 var~Ci !

5sc
2Q1234,

whereZi j 5Zi( f̂ j ,0), for j 51, 2, 3, 4, and

P12345(
i

~Zi12Zi22Zi31Zi4!2,

Q12345(
i

~Zi12Zi21Zi32Zi4!2,

i.e., functions of the Zernike polynomials only.
Back to our original problem in Eq.~17!, we must con-

sider the expected value of the cosine of a normal rand
variable. LetY;N(m,s2). The moment generating func
tion of Y is19

E~etY!5expS mt1
s2t2

2 D , ~18!

for any complext. Then,
013008J. Microlith., Microfab., Microsyst.
E~cosaY!5EFexp~ iaY!1exp~2 iaY!

2 G
5

1

2
$E@exp~ iaY!#1E@exp~2 iaY!#%

5
1

2 FexpS iam2
a2s2

2 D2expS 2 iam2
a2s2

2 D G
5expS 2

a2s2

2 D cosam, ~19!

where a is a constant. By substitutinga52p, Y5f12

2f34 ~or f121f34), we have

E$cos@2p~f122f34!#%5exp@22p2 var~f122f34!#

3cos@2pE~f122f34!#

5exp~22p2sc
2P1234!,

~20!
E$cos@2p~f121f34!#%5exp@22p2 var~f121f34!#

3cos@2pE~f121f34!#

5exp~22p2sc
2Q1234!.

Finally, E@(DX̂)2# is given by

E@~DX̂!2#5
A

8p2B
, ~21!

where

A5E
21

1 E
f̂4

1E
21

1 E
f̂2

1

S12~0!S34~0!@exp~22p2sc
2P1234!

2exp~22p2sc
2Q1234!# f̂ 12f̂ 34df̂ 1 df̂ 2 df̂ 3 df̂ 4 ,

B5F E
21

1 E
f̂2

1

S12~0!a~ f̂ 1 , f̂ 2! f̂ 12
2 df̂ 1 df̂ 2G2

.

The essence of Eq.~21! is thatE@(DX̂)2# is a function
of two parameters only—the phase widthŝ and the vari-
ance of the Zernike coefficientssc

2:

E@~DX̂!2#5u~ ŝ,sc
2!. ~22!

This is a very pleasant result becausesc
2 is related to the

mean rms aberration by Eq.~4!. In other words, given a
certain mean rms aberration,E@(DX̂)2# depends on the
phase width only.

In Fig. 8, the values ofE@(DX̂)2# computed from the
Monte Carlo analysis of Eq.~14! and those computed from
Eq. ~21! are plotted. A similar plot with the linearized ve
sion is shown in Fig. 9. This is done to show the validity
Eq. ~21!. In both figures, the results generally follow th
same trend, with better agreement at low phase wid
Since we are interested in only low phase widths, Eq.~21!
remains valid.
-6 Jan–Mar 2005/Vol. 4(1)
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Fig. 8 Comparison between the sample mean of (DX)2 obtained
from the Monte Carlo analysis of Eq. (14) and E@(DX)2# from Eq.
(21).
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tra are, in general, complex functions with nonzero re
parts. Examples include symmetric alternating PSMs w
phase error in the phase shifters and asymmetric alterna
PSMs. The method is briefly outlined as follows. By co

sidering Eq.~14! again, we can see that if Re@Õ̂x( f̂2 f̂s)#
Þ0, D12( f̂ s)Þ0. By retainingD12( f̂ s) in the derivation, we
can arrive at a new and more complicated expression
E@(DX̂)2#. This expressions helps us to analyze the ab
ration sensitvity for any mask patterns under coherent
aging.

Second, without takingJ( f̂ s ,ĝs)5d( f̂ s ,ĝs), the theory
can also be extended from coherent imaging to a gen
imaging condition, such as partially coherent imaging a
other modified illuminations. Together with the first point,
theory applied to any mask patterns and any light sour
can be obtained.

Finally, the optimality of phase width is also determine
by the necessity to maintain adequate image quality for
control. Figure 11 plots the simulated exposure latitude o
0.3~l/NA! line as a function of phase width. The exposu
latitude decreases from 30 to 18% as the phase width
creases from 0.8~l/NA! to 0.1~l/NA!. A trade-off exists
between placement sensivity and process window. A ma
facturable process requires at least a 15% expos
latitude.20 If this requirement is tightened, the optima
phase width should be adjusted accordingly.

6 Summary

Optimization was performed on the phase widths of alt
nating PSMs. The aim is to minimize the mean ima
placement error toward aberration under coherent imag
The constraint was a given mean rms aberration for a se
exposure systems. We first expressed the image placem
error as a function of effective light source, mask spectru
and wave aberration. By randomly generating wave abe
tions that conform to our constraint, we performed Mon
Carlo analysis to the absolute image placement erroruDX̂u
and the square of placement error (DX̂)2. From the results
of the Monte Carlo analysis, on average, a global minimu

Fig. 10 Optimal phase width as a function of rms aberration; CD
50.3(l/NA).
Equipped with Eq.~21!, we can use numerical method
to determine the position of the global minimum. We do n
proceed with the differentiation of Eq.~21! with respect to
ŝ, because Eq.~21! is still a complicated function ofŝ. We
chose the Golden Section Search method for its quick c
vergence. The range of search is limited to 0< ŝ<1. After
iterations, the optimal phase width is found to be 0.3217~l/
NA! ~i.e., approximately 117 nm! at 0.025l mean rms ab-
erration. The optimal phase width as a function of me
rms aberration is also plotted in Fig. 10. This curve sho
that the optimal phase width decreases with increasing
erration level.

5 Discussion

There are several points to note in the foregoing analy
First, the theory can be extended to any masks whose s

Fig. 9 Comparison between the sample mean of (DX)2 obtained
from the Monte Carlo analysis of the linearized Eq. (14) and
E@(DX)2# from Eq. (21).
-7 Jan–Mar 2005/Vol. 4(1)
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Mak et al.: Alternating phase-shifting mask design . . .
Fig. 11 Exposure latitude of a 0.3(l/NA) line printed with alternating
PSM increases with phase width. The image was simulated with
partial coherence factor50.5, and CD50.3(l/NA).
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of placement error is likely to occur at a phase width b
tween 0.2~l/NA! and 0.4~l/NA!. By the theoretical consid
eration of the expected value of (DX̂)2, the optimal phase
width of alternating PSM is obtained as a function of me
rms aberration. The results are generally applicable to
design of all alternating PSMs.
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