751 research outputs found

    Boundedness of Pseudodifferential Operators on Banach Function Spaces

    Full text link
    We show that if the Hardy-Littlewood maximal operator is bounded on a separable Banach function space X(Rn)X(\mathbb{R}^n) and on its associate space X(Rn)X'(\mathbb{R}^n), then a pseudodifferential operator Op(a)\operatorname{Op}(a) is bounded on X(Rn)X(\mathbb{R}^n) whenever the symbol aa belongs to the H\"ormander class Sρ,δn(ρ1)S_{\rho,\delta}^{n(\rho-1)} with 0<ρ10<\rho\le 1, 0δ<10\le\delta<1 or to the the Miyachi class Sρ,δn(ρ1)(ϰ,n)S_{\rho,\delta}^{n(\rho-1)}(\varkappa,n) with 0δρ10\le\delta\le\rho\le 1, 0δ00\le\delta0. This result is applied to the case of variable Lebesgue spaces Lp()(Rn)L^{p(\cdot)}(\mathbb{R}^n).Comment: To appear in a special volume of Operator Theory: Advances and Applications dedicated to Ant\'onio Ferreira dos Santo

    Catastrophizing mediates the relationship between the personal belief in a just world and pain outcomes among chronic pain support group attendees

    Get PDF
    Health-related research suggests the belief in a just world can act as a personal resource that protects against the adverse effects of pain and illness. However, currently, little is known about how this belief, particularly in relation to one’s own life, might influence pain. Consistent with the suggestions of previous research, the present study undertook a secondary data analysis to investigate pain catastrophizing as a mediator of the relationship between the personal just world belief and chronic pain outcomes in a sample of chronic pain support group attendees. Partially supporting the hypotheses, catastrophizing was negatively correlated with the personal just world belief and mediated the relationship between this belief and pain and disability, but not distress. Suggestions for future research and intervention development are made

    Evidence for a nuclear compartment of transcription and splicing located at chromosome domain boundaries

    Get PDF
    The nuclear topography of splicing snRNPs, mRNA transcripts and chromosome domains in various mammalian cell types are described. The visualization of splicing snRNPs, defined by the Sm antigen, and coiled bodies, revealed distinctly different distribution patterns in these cell types. Heat shock experiments confirmed that the distribution patterns also depend on physiological parameters. Using a combination of fluorescencein situ hybridization and immunodetection protocols, individual chromosome domains were visualized simultaneously with the Sm antigen or the transcript of an integrated human papilloma virus genome. Three-dimensional analysis of fluorescence-stained target regions was performed by confocal laser scanning microscopy. RNA transcripts and components of the splicing machinery were found to be generally excluded from the interior of the territories occupied by the individual chromosomes. Based on these findings we present a model for the functional compartmentalization of the cell nucleus. According to this model the space between chromosome domains, including the surface areas of these domains, defines a three-dimensional network-like compartment, termed the interchromosome domain (ICD) compartment, in which transcription and splicing of mRNA occurs

    Fluorescent D-amino-acids reveal bi-cellular cell wall modifications important for Bdellovibrio bacteriovorous predation

    Get PDF
    Modification of essential bacterial peptidoglycan (PG) containing cell walls can lead to antibiotic resistance, for example β-lactam resistance by L,D-transpeptidase activities. Predatory Bdellovibrio bacteriovorus are naturally antibacterial and combat infections by traversing, modifying and finally destroying walls of Gram-negative prey bacteria, modifying their own PG as they grow inside prey. Historically, these multi-enzymatic processes on two similar PG walls have proved challenging to elucidate. Here, with a PG labelling approach utilizing timed pulses of multiple fluorescent D-amino acids (FDAAs), we illuminate dynamic changes that predator and prey walls go through during the different phases of bacteria:bacteria invasion. We show formation of a reinforced circular port-hole in the prey wall; L,D-transpeptidaseBd mediated D-amino acid modifications strengthening prey PG during Bdellovibrio invasion and a zonal mode of predator-elongation. This process is followed by unconventional, multi-point and synchronous septation of the intracellular Bdellovibrio, accommodating odd- and even-numbered progeny formation by non-binary division

    Geometric maximal operators and BMO on product bases

    Full text link
    We consider the problem of the boundedness of maximal operators on BMO on shapes in Rn\mathbb{R}^n. We prove that for bases of shapes with an engulfing property, the corresponding maximal function is bounded from BMO to BLO, generalising a known result of Bennett for the basis of cubes. When the basis of shapes does not possess an engulfing property but exhibits a product structure with respect to lower-dimensional shapes coming from bases that do possess an engulfing property, we show that the corresponding maximal function is bounded from BMO to a space we define and call rectangular BLO

    Interrupting peptidoglycan deacetylation during Bdellovibrio predator-prey interaction prevents ultimate destruction of prey wall, liberating bacterial-ghosts

    Get PDF
    The peptidoglycan wall, located in the periplasm between the inner and outer membranes of the cell envelope in Gram-negative bacteria, maintains cell shape and endows osmotic robustness. Predatory Bdellovibrio bacteria invade the periplasm of other bacterial prey cells, usually crossing the peptidoglycan layer, forming transient structures called bdelloplasts within which the predators replicate. Prey peptidoglycan remains intact for several hours, but is modified and then degraded by predators escaping. Here we show predation is altered by deleting two Bdellovibrio N-acetylglucosamine (GlcNAc) deacetylases, one of which we show to have a unique two domain structure with a novel regulatory-”plug”. Deleting the deacetylases limits peptidoglycan degradation and rounded prey cell “ghosts” persist after mutant-predator exit. Mutant predators can replicate unusually in the periplasmic region between the peptidoglycan wall and the outer membrane rather than between wall and inner-membrane, yet still obtain nutrients from the prey cytoplasm. Deleting two further genes encoding DacB/PBP4 family proteins, known to decrosslink and round prey peptidoglycan, results in a quadruple mutant Bdellovibrio which leaves prey-shaped ghosts upon predation. The resultant bacterial ghosts contain cytoplasmic membrane within bacteria-shaped peptidoglycan surrounded by outer membrane material which could have promise as “bacterial skeletons” for housing artificial chromosomes

    The role of venture capitalists in the regional innovation ecosystem : a comparison of networking patterns between private and publicly backed venture capital funds

    Get PDF
    This paper empirically examines the development of social networks among venture capitalists and other professionals of the regional innovation ecosystem. Using an online survey of venture capitalists, the article considers their networking behaviour, focusing particularly on the distinction between those employed by private and those employed by publicly backed venture capital funds, and on the composition and spatial search of their networks. It investigates whether the frequency of interaction between venture capitalists and other members of the innovation ecosystem is associated with the nature of the venture capital funds. The paper provides the first detailed investigation of the relationship between different types of venture capitalists and other players of the innovation ecosystem such as universities incubators, research institutes, and business support organisations. The results show that there are distinctive differences within the two seemingly similar professional groups (private and public venture capitalists), and public dependence of the venture capital fund is strongly and significantly associated with higher volumes of interactions. The more publicly dependent a fund is, the more it interacts with other players of the innovation system. This finding has important implications for both academics and practitioners and suggests that publicly backed funds have a wider role to play in mobilising the different players of the regional innovation ecosystem

    Ankyrin-mediated self-protection during cell invasion by the bacterial predator Bdellovibrio bacteriovorus

    Get PDF
    Predatory Bdellovibrio bacteriovorus are natural antimicrobial organisms, killing other bacteria by whole-cell invasion. Self-protection against prey-metabolizing enzymes is important for the evolution of predation. Initial prey entry involves the predator’s peptidoglycan DD-endopeptidases, which decrosslink cell walls and prevent wasteful entry by a second predator. Here we identify and characterize a self-protection protein from B. bacteriovorus, Bd3460, which displays an ankyrin-based fold common to intracellular pathogens of eukaryotes. Co-crystal structures reveal Bd3460 complexation of dual targets, binding a conserved epitope of each of the Bd3459 and Bd0816 endopeptidases. Complexation inhibits endopeptidase activity and cell wall decrosslinking in vitro. Self-protection is vital — DBd3460 Bdellovibrio deleteriously decrosslink self-peptidoglycan upon invasion, adopt a round morpholog, and lose predatory capacity and cellular integrity. Our analysis provides the first mechanistic examination of self-protection in Bdellovibrio, documents protection-multiplicity for products of two different genomic loci, and reveals an important evolutionary adaptation to an invasive predatory bacterial lifestyle

    Measuring and modelling the response of Klebsiella pneumoniae KPC prey to Bdellovibrio bacteriovorus predation, in human serum and defined buffer

    Get PDF
    In worldwide conditions of increasingly antibiotic-resistant hospital infections, it is important to research alternative therapies. Bdellovibrio bacteriovorus bacteria naturally prey on Gram-negative pathogens, including antibiotic-resistant strains and so B. bacteriovorus have been proposed as "living antibiotics" to combat antimicrobially-resistant pathogens. Predator-prey interactions are complex and can be altered by environmental components. To be effective B. bacteriovorus predation needs to work in human body fluids such as serum where predation dynamics may differ to that studied in laboratory media. Here we combine mathematical modelling and lab experimentation to investigate the predation of an important carbapenem-resistant human pathogen, Klebsiella pneumoniae, by B. bacteriovorus in human serum versus buffer. We show experimentally that B. bacteriovorus is able to reduce prey numbers in each environment, on different timescales. Our mathematical model captures the underlying dynamics of the experimentation, including an initial predation-delay at the predator-prey-serum interface. Our research shows differences between predation in buffer and serum and highlights both the potential and limitations of B. bacteriovorus acting therapeutically against K. pneumoniae in serum, informing future research into the medicinal behaviours and dosing of this living antibacterial

    Calcitonin substitution in calcitonin deficiency reduces particle-induced osteolysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Periprosthetic osteolysis is a major cause of aseptic loosening in joint arthroplasty. This study investigates the impact of CT (calcitonin) deficiency and CT substitution under in-vivo circumstances on particle-induced osteolysis in <it>Calca </it>-/- mice.</p> <p>Methods</p> <p>We used the murine calvarial osteolysis model based on ultra-high molecular weight polyethylene (UHMWPE) particles in 10 C57BL/6J wild-type (WT) mice and twenty <it>Calca </it>-/- mice. The mice were divided into six groups: WT without UHMWPE particles (Group 1), WT with UHMWPE particles (Group 2), <it>Calca </it>-/- mice without UHMWPE particles (Group 3), <it>Calca </it>-/- mice with UHMWPE particles (Group 4), <it>Calca </it>-/- mice without UHMWPE particles and calcitonin substitution (Group 5), and <it>Calca </it>-/- mice with UHMWPE particle implantation and calcitonin substitution (Group 6). Analytes were extracted from serum and urine. Bone resorption was measured by bone histomorphometry. The number of osteoclasts was determined by counting the tartrate-resistant acid phosphatase (TRACP) + cells.</p> <p>Results</p> <p>Bone resorption was significantly increased in <it>Calca </it>-/- mice compared with their corresponding WT. The eroded surface in <it>Calca </it>-/- mice with particle implantation was reduced by 20.6% after CT substitution. Osteoclast numbers were significantly increased in <it>Calca </it>-/- mice after particle implantation. Serum OPG (osteoprotegerin) increased significantly after CT substitution.</p> <p>Conclusions</p> <p>As anticipated, <it>Calca </it>-/- mice show extensive osteolysis compared with wild-type mice, and CT substitution reduces particle-induced osteolysis.</p
    corecore