47 research outputs found

    Mouse Background Strain Profoundly Influences Paneth Cell Function and Intestinal Microbial Composition

    Get PDF
    Increasing evidence supports the central role of Paneth cells in maintaining intestinal host-microbial homeostasis. However, the direct impact of host genotype on Paneth cell function remains unclear. Here, we characterize key differences in Paneth cell function and intestinal microbial composition in two widely utilized, genetically distinct mouse strains (C57BL/6 and 129/SvEv). In doing so, we demonstrate critical influences of host genotype on Paneth cell activity and the enteric microbiota.Paneth cell numbers were determined by flow cytometry. Antimicrobial peptide (AMP) expression was evaluated using quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR), acid urea-polyacrylamide gel electrophoresis, and mass spectrometry. Effects of mouse background on microbial composition were assessed by reciprocal colonization of germ-free mice from both background strains, followed by compositional analysis of resultant gut bacterial communities using terminal restriction fragment length polymorphism analysis and 16 S qPCR. Our results revealed that 129/SvEv mice possessed fewer Paneth cells and a divergent AMP profile relative to C57BL/6 counterparts. Novel 129/SvEv å-defensin peptides were identified, including Defa2/18v, Defa11, Defa16, and Defa18. Host genotype profoundly affected the global profile of the intestinal microbiota, while both source and host factors were found to influence specific bacterial groups. Interestingly, ileal α-defensins from 129/SvEv mice displayed attenuated antimicrobial activity against pro-inflammatory E. coli strains, a bacterial species found to be expanded in these animals.This work establishes the important impact of host genotype on Paneth cell function and the composition of the intestinal microbiota. It further identifies specific AMP and microbial alterations in two commonly used inbred mouse strains that have varying susceptibilities to a variety of disorders, ranging from obesity to intestinal inflammation. This will be critical for future studies utilizing these murine backgrounds to study the effects of Paneth cells and the intestinal microbiota on host health and disease

    Protein misfolding and dysregulated protein homeostasis in autoinflammatory diseases and beyond.

    Get PDF
    Cells have a number of mechanisms to maintain protein homeostasis, including proteasome-mediated degradation of ubiquitinated proteins and autophagy, a regulated process of ‘self-eating’ where the contents of entire organelles can be recycled for other uses. The unfolded protein response prevents protein overload in the secretory pathway. In the past decade, it has become clear that these fundamental cellular processes also help contain inflammation though degrading pro-inflammatory protein complexes such as the NLRP3 inflammasome. Signaling pathways such as the UPR can also be co-opted by toll-like receptor and mitochondrial reactive oxygen species signaling to induce inflammatory responses. Mutations that alter key inflammatory proteins, such as NLRP3 or TNFR1, can overcome normal protein homeostasis mechanisms, resulting in autoinflammatory diseases. Conversely, Mendelian defects in the proteasome cause protein accumulation, which can trigger interferon-dependent autoinflammatory disease. In non-Mendelian inflammatory diseases, polymorphisms in genes affecting the UPR or autophagy pathways can contribute to disease, and in diseases not formerly considered inflammatory such as neurodegenerative conditions and type 2 diabetes, there is increasing evidence that cell intrinsic or environmental alterations in protein homeostasis may contribute to pathogenesis

    Prevalence of amebiasis in inflammatory bowel disease in University Clinical Hospital Mostar

    Get PDF
    AIM: To explore the prevalence of amebiasis in inflammatory bowel disease (IBD), Crohn’s disease and ulcerative colitis, in patients in Clinical hospital Mostar (Bosnia and Herzegovina, region of Herzegovina). METHODS: In this study, Entamoeba histolytica/dispar prevalence was investigated in fresh faeces by native microscopy and immunochromatographic rapid assay “RIDA(¼)QUICK Entamoeba test”, in 119 cases of new found IBD patients, 84 of ulcerative colitis and 35 of Crohn’s disease and in control group who had also 119 patients who didn’t have any gastrointestinal complaints. IBD diagnosis was established by standard diagnostic procedures (anamnesis, clinical manifestations, laboratory, endoscopy and biopsy). RESULTS: Entamoeba histolytica/dispar were found in 19 (16.0 %) of a total of 119 cases, 12 (14.3 %) of the 84 patients with ulcerative colitis and 7 (20.0 %) of the 35 patients with Crohn’s disease. As for the 119 patients in the control group who had not any gastrointestinal complaints, 2 (1.7 %) patients were found to have E. histolytica/dispar in their faeces. Amoeba prevalence in the patient group was determined to be significantly higher in group with Crohn’s disease, ulcerative colitis and IBD total than in the control group (p < 0.001). CONCLUSION: Ameba infections in patients with Crohn’s disease and ulcerative colitis, have a greater prevalence compared to the normal population
    corecore