475 research outputs found

    Quantum Computing in Molecular Magnets

    Full text link
    Shor and Grover demonstrated that a quantum computer can outperform any classical computer in factoring numbers and in searching a database by exploiting the parallelism of quantum mechanics. Whereas Shor's algorithm requires both superposition and entanglement of a many-particle system, the superposition of single-particle quantum states is sufficient for Grover's algorithm. Recently, the latter has been successfully implemented using Rydberg atoms. Here we propose an implementation of Grover's algorithm that uses molecular magnets, which are solid-state systems with a large spin; their spin eigenstates make them natural candidates for single-particle systems. We show theoretically that molecular magnets can be used to build dense and efficient memory devices based on the Grover algorithm. In particular, one single crystal can serve as a storage unit of a dynamic random access memory device. Fast electron spin resonance pulses can be used to decode and read out stored numbers of up to 10^5, with access times as short as 10^{-10} seconds. We show that our proposal should be feasible using the molecular magnets Fe8 and Mn12.Comment: 13 pages, 2 figures, PDF, version published in Nature, typos correcte

    Microsurgery for intracranial aneurysms: A qualitative survey on technical challenges and technological solutions

    Get PDF
    INTRODUCTION: Microsurgery for the clipping of intracranial aneurysms remains a technically challenging and high-risk area of neurosurgery. We aimed to describe the technical challenges of aneurysm surgery, and the scope for technological innovations to overcome these barriers from the perspective of practising neurovascular surgeons. MATERIALS AND METHODS: Consultant neurovascular surgeons and members of the British Neurovascular Group (BNVG) were electronically invited to participate in an online survey regarding surgery for both ruptured and unruptured aneurysms. The free text survey asked three questions: what do they consider to be the principal technical barriers to aneurysm clipping? What technological advances have previously contributed to improving the safety and efficacy of aneurysm clipping? What technological advances do they anticipate improving the safety and efficacy of aneurysm clipping in the future? A qualitative synthesis of responses was performed using multi-rater emergent thematic analysis. RESULTS: The most significant reported historical advances in aneurysm surgery fell into five themes: (1) optimising clip placement, (2) minimising brain retraction, (3) tissue handling, (4) visualisation and orientation, and (5) management of intraoperative rupture. The most frequently reported innovation by far was indocyanine green angiography (84% of respondents). The three most commonly cited future advances were hybrid surgical and endovascular techniques, advances in intraoperative imaging, and patient-specific simulation and planning. CONCLUSIONS: While some surgeons perceive that the rate of innovation in aneurysm clipping has been dwarfed in recent years by endovascular techniques, surgeons surveyed highlighted a broad range of future technologies that have the potential to continue to improve the safety of aneurysm surgery in the future

    A Mechanical Mass Sensor with Yoctogram Resolution

    Full text link
    Nanoelectromechanical systems (NEMS) have generated considerable interest as inertial mass sensors. NEMS resonators have been used to weigh cells, biomolecules, and gas molecules, creating many new possibilities for biological and chemical analysis [1-4]. Recently, NEMS-based mass sensors have been employed as a new tool in surface science in order to study e.g. the phase transitions or the diffusion of adsorbed atoms on nanoscale objects [5-7]. A key point in all these experiments is the ability to resolve small masses. Here we report on mass sensing experiments with a resolution of 1.7 yg (1 yg = 10^-24 g), which corresponds to the mass of one proton, or one hydrogen atom. The resonator is made of a ~150 nm long carbon nanotube resonator vibrating at nearly 2 GHz. The unprecedented level of sensitivity allows us to detect adsorption events of naphthalene molecules (C10H8) and to measure the binding energy of a Xe atom on the nanotube surface (131 meV). These ultrasensitive nanotube resonators offer new opportunities for mass spectrometry, magnetometry, and adsorption experiments.Comment: submitted version of the manuscrip

    Cost of diabetes care in out-patient clinics of Karachi, Pakistan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetes Mellitus (DM) is a growing epidemic and the cost of treating diabetes is largely increasing. The objective of this study was to estimate the cost-of-illness of DM among attendees of out-patient clinics in Karachi, Pakistan. This is the first study conducted from a societal perspective to estimate the cost of managing diabetes in Pakistan.</p> <p>Methods</p> <p>A prevalence-based 'Cost-of-Illness' study for diabetes care was conducted in six different out-patient clinics of Karachi, Pakistan from July to September 2006. A pre-tested questionnaire was administered to collect the data from 345 randomly selected persons with diabetes.</p> <p>Results</p> <p>The annual mean direct cost for each person with diabetes was estimated to be Pakistani rupees 11,580 (US$ 197). Medicines accounted for the largest share of direct cost (46%), followed by laboratory investigations (32%). We found that increased age, the number of complications and longer duration of the disease significantly increase the burden of cost on society (p < 0.001). Comparing cost with family income it was found that the poorest segment of society is spending 18% of total family income on diabetes care.</p> <p>Conclusion</p> <p>This study concluded that substantial expenditure is incurred by people with diabetes; with the implication that resources could be saved by prevention, earlier detection and a reduction in diabetes co-morbidities and complications through improved diabetes care. Large scale and cost-effective prevention programs need to be initiated to maximise health gains and to reverse the advance of this epidemic.</p

    Operational Significance of Discord Consumption: Theory and Experiment

    Full text link
    Coherent interactions that generate negligible entanglement can still exhibit unique quantum behaviour. This observation has motivated a search beyond entanglement for a complete description of all quantum correlations. Quantum discord is a promising candidate. Here, we demonstrate that under certain measurement constraints, discord between bipartite systems can be consumed to encode information that can only be accessed by coherent quantum interactions. The inability to access this information by any other means allows us to use discord to directly quantify this `quantum advantage'. We experimentally encode information within the discordant correlations of two separable Gaussian states. The amount of extra information recovered by coherent interaction is quantified and directly linked with the discord consumed during encoding. No entanglement exists at any point of this experiment. Thus we introduce and demonstrate an operational method to use discord as a physical resource.Comment: 10 pages, 3 figures, updated with Nature Physics Reference, simplified proof in Appendi

    Towards quantum computing with single atoms and optical cavities on atom chips

    Full text link
    We report on recent developments in the integration of optical microresonators into atom chips and describe some fabrication and implementation challenges. We also review theoretical proposals for quantum computing with single atoms based on the observation of photons leaking through the cavity mirrors. The use of measurements to generate entanglement can result in simpler, more robust and scalable quantum computing architectures. Indeed, we show that quantum computing with atom-cavity systems is feasible even in the presence of relatively large spontaneous decay rates and finite photon detector efficiencies.Comment: 14 pages, 6 figure

    Sex Ratio at Birth in India, Its Relation to Birth Order, Sex of Previous Children and Use of Indigenous Medicine

    Get PDF
    Objective: Sex-ratio at birth in families with previous girls is worse than those with a boy. Our aim was to prospectively study in a large maternal and child unit sex-ratio against previous birth sex and use of traditional medicines for sex selection. Main Outcome Measures: Sex-ratio among mothers in families with a previous girl and in those with a previous boy, prevalence of indigenous medicine use and sex-ratio in those using medicines for sex selection. Results: Overall there were 806 girls to 1000 boys. The sex-ratio was 720:1000 if there was one previous girl and 178:1000 if there were two previous girls. In second children of families with a previous boy 1017 girls were born per 1000 boys. Sexratio in those with one previous girl, who were taking traditional medicines for sex selection, was 928:1000. Conclusion: Evidence from the second children clearly shows the sex-ratio is being manipulated by human interventions. More mothers with previous girls tend to use traditional medicines for sex selection, in their subsequent pregnancies. Those taking such medication do not seem to be helped according to expectations. They seem to rely on this method and so are less likely use more definitive methods like sex selective abortions. This is the first such prospective investigation of sex ratio in second children looked at against the sex of previous children. More studies are needed to confirm the findings

    Intracellular Water Exchange for Measuring the Dry Mass, Water Mass and Changes in Chemical Composition of Living Cells

    Get PDF
    We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell’s buoyant mass sequentially in an H[subscript 2]O-based fluid and a D[subscript 2]O-based fluid. Rapid exchange of intracellular H[subscript 2]O for D[subscript 2]O renders the cell’s water content neutrally buoyant in both measurements, and thus the paired measurements yield the mass and density of the cell’s dry material alone. Utilizing this same property of rapid water exchange, we also demonstrate the quantification of intracellular water mass. In a population of E. coli, we paired these measurements to estimate the percent dry weight by mass and volume. We then focused on cellular dry density – the average density of all cellular biomolecules, weighted by their relative abundances. Given that densities vary across biomolecule types (RNA, DNA, protein), we investigated whether we could detect changes in biomolecular composition in bacteria, fungi, and mammalian cells. In E. coli, and S. cerevisiae, dry density increases from stationary to exponential phase, consistent with previously known increases in the RNA/protein ratio from up-regulated ribosome production. For mammalian cells, changes in growth conditions cause substantial shifts in dry density, suggesting concurrent changes in the protein, nucleic acid and lipid content of the cell.National Cancer Institute (U.S.). Physical Sciences-Oncology Center (U54CA143874)National Institutes of Health (U.S.) (Center for Cell Division Process Grant P50GM6876)National Institutes of Health (U.S.) (Contract R01CA170592)United States. Army Research Office (Institute for Collaborate Biotechnologies Contract W911NF-09-D-0001
    corecore