97 research outputs found

    Complete Anatomy of B -> K*ll and its angular distribution

    Full text link
    We present a complete and optimal set of observables for the exclusive 4-body B meson decay B -> K*(->K pi) l+l- in the low dilepton mass region, that contains a maximal number of clean observables. This basis of observables is built in a systematic way. We show that all the previously defined observables and any observable that one can construct, can be expressed as a function of this basis. This set of observables contains all the information that can be extracted from the angular distribution in the cleanest possible way. We provide explicit expressions for the full and the uniangular distributions in terms of this basis. The conclusions presented here can be easily extended to the large-q^2 region. We study the sensitivity of the observables to right-handed currents and scalars. Finally, we present for the first time all the symmetries of the full distribution including massive terms and scalar contributions.Comment: 37 pages, 12 Figures. Corrected typo in Eqs. (29) and (44). Results and conclusions unchange

    New Physics in b -> s mu+ mu-: CP-Conserving Observables

    Full text link
    We perform a comprehensive study of the impact of new-physics operators with different Lorentz structures on decays involving the b -> s mu+ mu- transition. We examine the effects of new vector-axial vector (VA), scalar-pseudoscalar (SP) and tensor (T) interactions on the differential branching ratios and forward-backward asymmetries (A_{FB}'s) of Bsbar -> mu+ mu-, Bdbar -> Xs mu+ mu-, Bsbar -> mu+ mu- gamma, Bdbar -> Kbar mu+ mu-, and Bdbar -> K* mu+ mu-, taking the new-physics couplings to be real. In Bdbar -> K* mu+ mu-, we further explore the polarization fraction f_L, the angular asymmetry A_T^{(2)}, and the longitudinal-transverse asymmetry A_{LT}. We identify the Lorentz structures that would significantly impact these observables, providing analytical arguments in terms of the contributions from the individual operators and their interference terms. In particular, we show that while the new VA operators can significantly enhance most of the asymmetries beyond the Standard Model predictions, the SP and T operators can do this only for A_{FB} in Bdbar -> Kbar mu+ mu-.Comment: 54 pages, JHEP format, 45 figures (included). 5/6/2013: typos in K* mu mu angular coefficients corrected, typos in Eq. (D.12) corrected, added a missing term in I3LT in Eq. (D.16). Numerical analysis unchange

    Model-independent constraints on new physics in b --> s transitions

    Get PDF
    We provide a comprehensive model-independent analysis of rare decays involving the b --> s transition to put constraints on dimension-six Delta(F)=1 effective operators. The constraints are derived from all the available up-to-date experimental data from the B-factories, CDF and LHCb. The implications and future prospects for observables in b --> s l+l- and b --> s nu nu transitions in view of improved measurements are also investigated. The present work updates and generalises previous studies providing, at the same time, a useful tool to test the flavour structure of any theory beyond the SM.Comment: 1+39 pages, 12 figures, 3 tables. v2: minor modifications, typos corrected, references added, version to be published in JHE

    New-physics contributions to the forward-backward asymmetry in B -> K* mu+ mu-

    Full text link
    We study the forward-backward asymmetry (AFB) and the differential branching ratio (DBR) in B -> K* mu+ mu- in the presence of new physics (NP) with different Lorentz structures. We consider NP contributions from vector-axial vector (VA), scalar-pseudoscalar (SP), and tensor (T) operators, as well as their combinations. We calculate the effects of these new Lorentz structures in the low-q^2 and high-q^2 regions, and explain their features through analytic approximations. We find two mechanisms that can give a significant deviation from the standard-model predictions, in the direction indicated by the recent measurement of AFB by the Belle experiment. They involve the addition of the following NP operators: (i) VA, or (ii) a combination of SP and T (slightly better than T alone). These two mechanisms can be distinguished through measurements of DBR in B -> K* mu+ mu- and AFB in B -> K mu+ mu-.Comment: 33 pages, revtex, 9 figures. Paper originally submitted with the wrong figures. This is corrected in the replacement. An incorrect factor of 2 found in a formula. This is corrected and figures modified. Conclusions unchanged. Typos correcte

    Bayesian Fit of Exclusive b→sℓˉℓb \to s \bar\ell\ell Decays: The Standard Model Operator Basis

    Full text link
    We perform a model-independent fit of the short-distance couplings C7,9,10C_{7,9,10} within the Standard Model set of b→sÎłb\to s\gamma and b→sℓˉℓb\to s\bar\ell\ell operators. Our analysis of B→K∗γB \to K^* \gamma, B→K(∗)ℓˉℓB \to K^{(*)} \bar\ell\ell and Bs→ΌˉΌB_s \to \bar\mu\mu decays is the first to harness the full power of the Bayesian approach: all major sources of theory uncertainty explicitly enter as nuisance parameters. Exploiting the latest measurements, the fit reveals a flipped-sign solution in addition to a Standard-Model-like solution for the couplings CiC_i. Each solution contains about half of the posterior probability, and both have nearly equal goodness of fit. The Standard Model prediction is close to the best-fit point. No New Physics contributions are necessary to describe the current data. Benefitting from the improved posterior knowledge of the nuisance parameters, we predict ranges for currently unmeasured, optimized observables in the angular distributions of B→K∗(→Kπ) ℓˉℓB\to K^*(\to K\pi)\,\bar\ell\ell.Comment: 42 pages, 8 figures; v2: Using new lattice input for f_Bs, considering Bs-mixing effects in BR[B_s->ll]. Main results and conclusion unchanged, matches journal versio

    Supersymmetric contributions to Bˉs→ϕπ0\bar{B}_s \to \phi \pi^0 and Bˉs→ϕρ0\bar{B}_s \to \phi \rho^0 decays in SCET

    Full text link
    We study the decay modes Bˉs→ϕπ0\bar{B}_s\to \phi \pi^0 and Bˉs→ϕρ0\bar{B}_s\to \phi \rho^0 using Soft Collinear Effective Theory. Within Standard Model and including the error due to the SU(3) breaking effect in the SCET parameters we find that BR Bˉs→ϕπ0=7−1−2+1+2×10−8\bar{B}_s\to \phi \pi^0 =7_{-1-2}^{+1+2}\times 10^{-8} and BR Bˉs→ϕπ0=9−1−4+1+3×10−8\bar{B}_s\to \phi \pi^0=9_{-1-4}^{+1+3}\times 10^{-8} corresponding to solution 1 and solution 2 of the SCET parameters respectively.For the decay mode Bˉs→ϕρ0\bar{B}_s\to \phi \rho^0, we find that BR Bˉs→ϕρ0=20.2−1−12+1+9×10−8\bar{B}_s\to \phi \rho^0 = 20.2^{+1+9}_{-1-12}\times 10^{-8} and BR Bˉs→ϕρ0=34.0−1.5−22+1.5+15×10−8 \bar{B}_s\to \phi \rho^0 = 34.0^{+1.5 + 15}_{-1.5-22}\times 10^{-8} corresponding to solution 1 and solution 2 of the SCET parameters respectively. We extend our study to include supersymmetric models with non-universal A-terms where the dominant contributions arise from diagrams mediated by gluino and chargino exchanges. We show that gluino contributions can not lead to an enhancement of the branching ratios of Bˉs→ϕπ0\bar{B}_s\to \phi \pi^0 and Bˉs→ϕρ0\bar{B}_s\to \phi \rho^0. In addition, we show that SUSY contributions mediated by chargino exchange can enhance the branching ratio of Bˉs→ϕπ0\bar{B}_s\to \phi \pi^0 by about 14% with respect to the SM prediction. For the branching ratio of Bˉs→ϕρ0\bar{B}_s\to \phi \rho^0, we find that SUSY contributions can enhance its value by about 1% with respect to the SM prediction.Comment: 25 pages,5 figures, version accepted for publicatio

    Supersymmetric constraints from Bs -> mu+mu- and B -> K* mu+mu- observables

    Get PDF
    We study the implications of the recent LHCb limit and results on Bs -> mu+mu- and B -> K* mu+mu- observables in the constrained SUSY scenarios. After discussing the Standard Model predictions and carefully estimating the theoretical errors, we show the constraining power of these observables in CMSSM and NUHM. The latest limit on BR(Bs -> mu+mu-), being very close to the SM prediction, constrains strongly the large tan(beta) regime and we show that the various angular observables from B -> K* mu+mu- decay can provide complementary information in particular for moderate tan(beta) values.Comment: 30 pages, 14 figure

    The decay Bs -> mu+ mu-: updated SUSY constraints and prospects

    Get PDF
    We perform a study of the impact of the recently released limits on BR(Bs -> mu+ mu-) by LHCb and CMS on several SUSY models. We show that the obtained constraints can be superior to those which are derived from direct searches for SUSY particles in some scenarios, and the use of a double ratio of purely leptonic decays involving Bs -> mu+ mu- can further strengthen such constraints. We also discuss the experimental sensitivity and prospects for observation of Bs -> mu+ mu- during the sqrt(s)=7 TeV run of the LHC, and its potential implications.Comment: 30 pages, 21 figures. v2: Improved discussion of constraints from B -> tau nu, references adde

    Mediation and the Best Interests of the Child from the Child Law Perspective

    Get PDF
    What is the best interests of the child in family mediation and is mediation in the best interests of the child? In this article, I use child law and the United Nations Convention on the Rights of the Child combined with mediation theory to discuss these questions. Both mediation and the best interests of the child are open for multiple interpretations. Using facilitative and evaluative mediation theory and the legal concept ‘the best interests of the child’, I explore and compare the understandings of these concepts as they apply to family mediation. This includes a discussion of the advantages and disadvantages of facilitative as well as evaluative mediation orientations in terms of protecting the best interests of the child. Finnish court-connected family mediation is a combination of both mediation orientations, and the mediator is obliged to secure the best interests of the child. From a theoretical point of view, this seems to be a challenging combination.Peer reviewe

    Exploring New Physics in the C7-C7' plane

    Get PDF
    The Wilson coefficient C7 governing the radiative electromagnetic decays of B meson has been calculated to a very high accuracy in the Standard Model, but experimental bounds on either the magnitude or the sign of C7 are often model-dependent. In the present paper, we attempt at constraining both the magnitude and sign of C7 using a systematic approach. We consider already measured observables like the branching ratios of B \rightarrow Xs mu+ mu- and B \rightarrow Xs gamma, the isospin and CP asymmetries in B \rightarrow K* gamma, as well as AFB and FL in B \rightarrow K*l+l-. We also discuss the transverse observable AT2 which, once measured, may help to disentangle some of the scenarios considered. We explore the constraints on C7, C9, C10 as well as their chirality-flipped counterparts. Within our framework, we find that we need to extend the constraints up to 1.6 sigma to allow for the "flipped-sign solution" of C7. The SM solution for C7 exhibits a very mild tension if New Physics is allowed in dipole operators only. We provide semi-numerical expressions for all these observables as functions of the relevant Wilson coefficients at the low scale.Comment: 54 pages, 16 figures, 15 tables. Normalization factor introduced for the integrated AFB and FL in Sec.2.5 (Eq.2.35-2.38). Conclusions unchanged. Not updated in JHE
    • 

    corecore