6 research outputs found

    LOFAR detectability of prompt low-frequency radio emission during gamma-ray burst X-ray flares

    Get PDF
    The prompt emission in long gamma-ray bursts arises from within relativistic outflows created during the collapse of massive stars, and the mechanism by which radiation is produced may be either magnetically- or matter-dominated. In this work we suggest an observational test of a magnetically-dominated Poynting flux model that predicts both gamma-ray and low-frequency radio pulses. A common feature among early light curves of long gamma-ray bursts are X-ray flares, which have been shown to arise from sites internal to the jet. Ascribing these events to the prompt emission, we take an established Swift XRT flare sample and apply a magnetically-dominated wind model to make predictions for the timing and flux density of corresponding radio pulses in the ~100-200 MHz band observable with radio facilities such as LOFAR. We find that 44 per cent of the X-ray flares studied would have had detectable radio emission under this model, for typical sensitivities reached using LOFAR's rapid response mode and assuming negligible absorption and scattering effects in the interstellar and intergalactic medium. We estimate the rate of Swift gamma-ray bursts displaying X-ray flares with detectable radio pulses, accessible to LOFAR, of order seven per year. We determine that LOFAR triggered observations can play a key role in establishing the long debated mechanism responsible for gamma-ray burst prompt emission

    LOFAR early-time search for coherent radio emission from short GRB 181123B

    Get PDF
    The mergers of two neutron stars are typically accompanied by broad-band electromagnetic emission from either a relativistic jet or a kilonova. It has also been long predicted that coherent radio emission will occur during the merger phase or from a newly formed neutron star remnant; however, this emission has not been seen to date. This paper presents the deepest limits for this emission from a neutron star merger, following triggered LOFAR observations of the short gamma-ray burst 181123B, starting 4.4 min after the GRB occurred. During the X-ray plateau phase, a signature of ongoing energy injection, we detect no radio emission to a 3σ limit of 153 mJy at 144 MHz (image integration time of 136 s), which is significantly fainter than the predicted emission from a standard neutron star. At a redshift of 1.8, this corresponds to a luminosity of 2.5 × 1044 erg s−1. Snapshot images were made of the radio observation on a range of time-scales, targeting short-duration radio flashes similar to fast radio bursts. No emission was detected in the snapshot images at the location of GRB 181123B enabling constraints to be placed on the prompt coherent radio emission model and emission predicted to occur when a neutron star collapses to form a black hole. At the putative host redshift of 1.8 for GRB 181123B, the non-detection of the prompt radio emission is two orders of magnitude lower than expected for magnetic reconnection models for prompt GRB emission and no magnetar emission is expected

    The Swift Deep Galactic Plane Survey (DGPS) Phase I Catalog

    No full text
    The Swift Deep Galactic Plane Survey (DGPS) is a Swift Key Project consisting of 380 tiled pointings covering ∼40 deg2 of the Galactic plane between longitude 10 1034 erg s−1 to the edge of the Galaxy. The main survey goal is to produce a rich sample of new X-ray sources and transients, while also covering a broad discovery space. Here, we introduce the survey strategy and present a catalog of sources detected during Phase I observations. In total, we identify 928 X-ray sources, of which 348 are unique to our X-ray catalog. We report on the characteristics of sources in our catalog and highlight sources newly classified and published by the DGPS team

    Identification of 1RXS J165424.6-433758 as a Polar Cataclysmic Variable

    No full text
    We present the results of our X-ray, ultraviolet, and optical follow-up campaigns of 1RXS J165424.6-433758, an X-ray source detected with the Swift Deep Galactic Plane Survey. The source X-ray spectrum (Swift and NuSTAR) is described by thermal bremsstrahlung radiation with a temperature of kT = 10.1 ± 1.2 keV, yielding an X-ray (0.3-10 keV8) luminosity L X = (6.5 ± 0.8) × 1031 erg s−1 at a Gaia distance of 460 pc. Spectroscopy with the Southern African Large Telescope revealed a flat continuum dominated by emission features, demonstrating an inverse Balmer decrement, the λ4640 Bowen blend, almost a dozen He i lines, and He ii λ4541, λ4686, and λ5411. Our high-speed photometry demonstrates a preponderance of flickering and flaring episodes, and revealed the orbital period of the system, P orb = 2.87 hr, which fell well within the cataclysmic variable (CV) period gap between 2 and 3 hr. These features classify 1RXS J165424.6-433758 as a nearby polar magnetic CV

    Fires in the deep: The luminosity distribution of early-time gamma-ray-burst afterglows in light of the Gamow Explorer sensitivity requirements

    No full text
    Context. Gamma-ray bursts (GRBs) are ideal probes of the Universe at high redshift (ɀ), pinpointing the locations of the earliest star-forming galaxies and providing bright backlights with simple featureless power-law spectra that can be used to spectrally fingerprint the intergalactic medium and host galaxy during the period of reionization. Future missions such as Gamow Explorer (hereafter Gamow) are being proposed to unlock this potential by increasing the rate of identification of high-ɀ (ɀ > 5) GRBs in order to rapidly trigger observations from 6 to 10 m ground telescopes, the James Webb Space Telescope (JWST), and the upcoming Extremely Large Telescopes (ELTs). Aims. Gamow was proposed to the NASA 2021 Medium-Class Explorer (MIDEX) program as a fast-slewing satellite featuring a wide-field lobster-eye X-ray telescope (LEXT) to detect and localize GRBs with arcminute accuracy, and a narrow-field multi-channel photo-ɀ infrared telescope (PIRT) to measure their photometric redshifts for > 80% of the LEXT detections using the Lyman-α dropout technique. We use a large sample of observed GRB afterglows to derive the PIRT sensitivity requirement. Methods. We compiled a complete sample of GRB optical–near-infrared (optical-NIR) afterglows from 2008 to 2021, adding a total of 66 new afterglows to our earlier sample, including all known high-ɀ GRB afterglows. This sample is expanded with over 2837 unpublished data points for 40 of these GRBs. We performed full light-curve and spectral-energy-distribution analyses of these after-glows to derive their true luminosity at very early times. We compared the high-ɀ sample to the comparison sample at lower redshifts. For all the light curves, where possible, we determined the brightness at the time of the initial finding chart of Gamow, at different high redshifts and in different NIR bands. This was validated using a theoretical approach to predicting the afterglow brightness. We then followed the evolution of the luminosity to predict requirements for ground- and space-based follow-up. Finally, we discuss the potential biases between known GRB afterglow samples and those to be detected by Gamow. Results. We find that the luminosity distribution of high-ɀ GRB afterglows is comparable to those at lower redshift, and we therefore are able to use the afterglows of lower-ɀ GRBs as proxies for those at high ɀ. We find that a PIRT sensitivity of 15 µJy (21 mag AB) in a 500 s exposure simultaneously in five NIR bands within 1000 s of the GRB trigger will meet the Gamow mission requirements. Depending on the ɀ and NIR band, we find that between 75% and 85% of all afterglows at ɀ > 5 will be recovered by Gamow at 5σ detection significance, allowing the determination of a robust photo-ɀ. As a check for possible observational biases and selection effects, we compared the results with those obtained through population-synthesis models, and find them to be consistent. Conclusions. Gamow and other high-ɀ GRB missions will be capable of using a relatively modest 0.3 m onboard NIR photo-ɀ telescope to rapidly identify and report high-ɀ GRBs for further follow-up by larger facilities, opening a new window onto the era of reionization and the high-redshift Universe.</p

    The first JWST spectrum of a GRB afterglow: No bright supernova in observations of the brightest GRB of all time, GRB 221009A

    No full text
    International audienceWe present JWST and Hubble Space Telescope (HST) observations of the afterglow of GRB 221009A, the brightest gamma-ray burst (GRB) ever observed. Observations obtained with NIRSPEC (0.6-5.5 micron) and MIRI (5-12 micron) 12 days after the burst are the first mid-IR spectroscopy performed for a GRB. Assuming the underlying slope is that of a single power-law, we obtain β≈0.35\beta \approx 0.35 and AV=4.9A_V = 4.9, in excess of the notional Galactic value. This is suggestive of extinction above the notional Galactic value, possibly due to patchy extinction within the Milky Way or dust in the GRB host galaxy. It further implies that the X-ray and optical/IR regimes are not on the same branch of the synchrotron spectrum of the afterglow. If the cooling break lies between the X-ray and optical/IR, then the temporal declines would only match for a post jet break, ISM medium and electron index with p<2p<2. The shape of the JWST spectrum is near-identical in the optical/nIR to X-shooter spectroscopy obtained at 0.5 days and to later time observations with HST. The lack of spectral evolution suggests the SNe is either substantially fainter or bluer than SN~1998bw. Our {\em HST} observations also reveal a disc-like host galaxy, viewed close to edge-on that further complicates the isolation of any supernova component. The host galaxy appears rather typical amongst long-GRB hosts and suggests that the extreme properties of GRB 221009A are not directly tied to its galaxy-scale environment
    corecore