376 research outputs found
Nutritional considerations for the vegan athlete.
This is the final version. Available from Elsevier via the DOI in this record. Accepting a continued rise in the prevalence of vegan-type diets in the general population is also likely to occur in athletic populations, it is of importance to assess the potential impact on athletic performance, adaptation, and recovery. Nutritional consideration for the athlete requires optimization of energy, macronutrient, and micronutrient intakes, and potentially the judicious selection of dietary supplements, all specified to meet the individual athlete's training and performance goals. The purpose of this review is to assess whether adopting a vegan diet is likely to impinge on such optimal nutrition and, where so, consider evidence based yet practical and pragmatic nutritional recommendations. Current evidence does not support that a vegan-type diet will enhance performance, adaptation, or recovery in athletes, but equally suggests that an athlete can follow a (more) vegan diet without detriment. A clear caveat, however, is that vegan diets consumed spontaneously may induce suboptimal intakes of key nutrients, most notably quantity and/or quality of dietary protein and specific micronutrients (eg, iron, calcium, vitamin B12, and vitamin D). As such, optimal vegan sports nutrition requires (more) careful consideration, evaluation, and planning. Individual/seasonal goals, training modalities, athlete type, and sensory/cultural/ethical preferences, among other factors, should all be considered when planning and adopting a vegan diet.Marlow Foods Ltd
A head-to-head comparison of speckle tracking echocardiography and feature tracking cardiovascular magnetic resonance imaging in right ventricular deformation
Aims: Speckle tracking echocardiography (STE) and feature tracking cardiovascular magnetic resonance imaging (FT-CMR) are advanced imaging techniques which are both used for quantification of global and regional myocardial strain. Direct comparisons of STE and FT-CMR regarding right ventricular (RV) strain analysis are limited. We aimed to study clinical performance, correlation and agreement of RV strain by these techniques, using arrhythmogenic right ventricular cardiomyopathy (ARVC) as a model for RV disease. //
Methods and results: We enrolled 110 subjects, including 34 patients with definite ARVC, 30 preclinical relatives of ARVC patients, and 46 healthy control subjects. Global and regional RV longitudinal peak strain (PS) were measured by STE and FT-CMR. Both modalities showed reduced strain values in ARVC patients compared to ARVC relatives (STE global PS: P < 0.001; FT-CMR global PS: P < 0.001) and reduced strain values in ARVC relatives compared to healthy control subjects (STE global PS: P = 0.042; FT-CMR global PS: P = 0.084). There was a moderate, albeit significant correlation between RV strain values obtained by STE and FT-CMR [global PS r = 0.578 (95% confidence interval 0.427–0.697), P < 0.001]. Agreement between the techniques was weak (limits of agreement for global PS: ±11.8%). Correlation and agreement both deteriorated when regional strain was studied. // Conclusion: RV STE and FT-CMR show a similar trend within the spectrum of ARVC and have significant correlation, but inter-modality agreement is weak. STE and FT-CMR may therefore both individually have added value for assessment of RV function, but RV PS values obtained by these techniques currently cannot be used interchangeably in clinical practice
Algae Ingestion Increases Resting and Exercised Myofibrillar Protein Synthesis Rates to a Similar Extent as Mycoprotein in Young Adults
This is the final version. Available on open access from Elsevier via the DOI in this recordData availability:
Data described in the manuscript may be made available upon request, pending application.BACKGROUND: Spirulina [SPIR] (cyanobacterium) and chlorella [CHLO] (microalgae) are foods rich in protein and essential amino acids; however, their capacity to stimulate myofibrillar protein synthesis (MyoPS) in humans remains unknown. OBJECTIVES: We assessed the impact of ingesting SPIR and CHLO compared with an established high-quality nonanimal-derived dietary protein source (fungal-derived mycoprotein [MYCO]) on plasma amino acid concentrations, as well as resting and postexercise MyoPS rates in young adults. METHODS: Thirty-six healthy young adults (age: 22 ± 3 y; BMI: 23 ± 3 kg·m-2; male [m]/female [f], 18/18) participated in a randomized, double-blind, parallel-group trial. Participants received a primed, continuous infusion of L-[ring-2H5]-phenylalanine and completed a bout of unilateral-resistance leg exercise before ingesting a drink containing 25 g protein from MYCO (n = 12; m/f, 6/6), SPIR (n = 12; m/f, 6/6), or CHLO (n = 12; m/f, 6/6). Blood and bilateral muscle samples were collected at baseline and during a 4-h postprandial and postexercise period to assess the plasma amino acid concentrations and MyoPS rates in rested and exercised tissue. RESULTS: Protein ingestion increased the plasma total and essential amino acid concentrations (time effects; all P 0.05), but with higher rates in exercised compared with rested muscle (time × exercise effect; P < 0.001). CONCLUSIONS: The ingestion of a single bolus of algae-derived SPIR and CHLO increases resting and postexercise MyoPS rates to a comparable extent as MYCO, despite divergent postprandial plasma amino acid responses
Ingestion of mycoprotein, pea protein, and their blend support comparable postexercise myofibrillar protein synthesis rates in resistance-trained individuals.
This is the final version. Available from the American Physiological Society via the DOI in this record. DATA AVAILABILITY:
Data described in the manuscript may be made available upon
request, pending application.Pea protein is an attractive nonanimal-derived protein source to support dietary protein requirements. However, although high in leucine, a low methionine content has been suggested to limit its anabolic potential. Mycoprotein has a complete amino acid profile which, at least in part, may explain its ability to robustly stimulate myofibrillar protein synthesis (MyoPS) rates. We hypothesized that an inferior postexercise MyoPS response would be seen following ingestion of pea protein compared with mycoprotein, which would be (partially) rescued by blending the two sources. Thirty-three healthy, young [age: 21 ± 1 yr, body mass index (BMI): 24 ± 1 kg·m-2] and resistance-trained participants received primed, continuous infusions of l-[ring-2H5]phenylalanine and completed a bout of whole body resistance exercise before ingesting 25 g of protein from mycoprotein (MYC, n = 11), pea protein (PEA, n = 11), or a blend (39% MYC, 61% PEA) of the two (BLEND, n = 11). Blood and muscle samples were taken pre-, 2 h, and 4 h postexercise/protein ingestion to assess postabsorptive and postprandial postexercise myofibrillar protein fractional synthetic rates (FSRs). Protein ingestion increased plasma essential amino acid and leucine concentrations (time effect; P 0.05). These data show that all three nonanimal-derived protein sources have utility in supporting postexercise muscle reconditioning.NEW & NOTEWORTHY This study provides evidence that pea protein (PEA), mycoprotein (MYC), and their blend (BLEND) can support postexercise myofibrillar protein synthesis rates following a bout of whole body resistance exercise. Furthermore, these data suggest that a methionine deficiency in pea may not limit its capacity to stimulate an acute increase in muscle protein synthesis (MPS).National Institute of AgingMarlow Foods Ltd
Manipulative therapy in addition to usual medical care accelerates recovery of shoulder complaints at higher costs: economic outcomes of a randomized trial
Background: Shoulder complaints are common in primary care and have unfavourable long term prognosis. Our objective was to evaluate the clinical effectiveness of manipulative therapy of the cervicothoracic spine and the adjacent ribs in addition to usual medical care (UMC) by the general practitioner in the treatment of shoulder complaints. Methods: This economic evaluation was conducted alongside a randomized trial in primary care. Included were 150 patients with shoulder complaints and a dysfunction of the cervicothoracic spine and adjacent ribs. Patients were treated with UMC (NSAID's, corticosteroid injection or referral to physical therapy) and were allocated at random (yes/no) to manipulative therapy (manipulation and mobilization). Patient perceived recovery, severity of main complaint, shoulder pain, disability and general health were outcome measures. Data about direct and indirect costs were collected by means of a cost diary. Results: Manipulative therapy as add-on to UMC accelerated recovery on all outcome measures included. At 26 weeks after randomization, both groups reported similar recovery rates (41% vs. 38%), but the difference between groups in improvement of severity of the main complaint, shoulder pain and disability sustained. Compared to the UMC group the total costs were higher in the manipulative group ((sic)1167 vs.(sic)555). This is explained mainly by the costs of the manipulative therapy itself and the higher costs due sick leave from work. The cost effectiveness ratio showed that additional manipulative treatment is more costly but also more effective than UMC alone. The cost-effectiveness acceptability curve shows that a 50%-probability of recovery with AMT within 6 months after initiation of treatment is achieved at (sic)2876. Conclusion: Manipulative therapy in addition to UMC accelerates recovery and is more effective than UMC alone on the long term, but is associated with higher costs
Dose finding of melatonin for chronic idiopathic childhood sleep onset insomnia: an RCT
Contains fulltext :
86695.pdf (publisher's version ) (Open Access)Rationale Pharmacokinetics of melatonin in children might differ from that in adults.
Objectives This study aims to establish a dose–response relationship for melatonin in advancing dim light melatonin onset (DLMO), sleep onset (SO), and reducing sleep onset latency (SOL) in children between 6 and 12 years with chronic sleep onset insomnia (CSOI).
Methods The method used for this study is the randomized, placebo-controlled double-blind trial. Children with CSOI (n=72) received either melatonin 0.05, 0.1, and 0.15 mg/kg or placebo during 1 week. Sleep was assessed with log and actigraphy during this week and the week before. Outcomes were the shifts in DLMO, SO, and SOL.
Results Treatment with melatonin significantly advanced SO and DLMO by approximately 1 h and decreased SOL by 35 min. Within the three melatonin groups, effect size was not different, but the circadian time of administration (TOA) correlated significantly with treatment effect on DLMO (rs=-0.33, p=0.022) and SO (rs=-0.38, p=0.004), whereas clock TOA was correlated with SO shift (r=-0.35, p=0.006) and not with DLMO shift.
Conclusions No dose–response relationship of melatonin with SO, SOL, and DLMO is found within a dosage range of 0.05–0.15 mg/kg. The effect of exogenous melatonin on SO, SOL, and DLMO increases with an earlier circadian TOA. The soporific effects of melatonin enhance the SO shift. This study demonstrates that melatonin for treatment of CSOI in children is effective in a dosage of 0.05 mg/kg given at least 1 to 2 h before DLMO and before desired bedtime.13 p
Plant Protein Blend Ingestion Stimulates Post-Exercise Myofibrillar Protein Synthesis Rates Equivalently to Whey in Resistance-Trained Adults
Purpose Whey protein ingestion is typically considered an optimal dietary strategy to maximize myofibrillar protein synthesis (MyoPS) following resistance exercise. While single source plant protein ingestion is typically less effective, at least partly, due to less favorable amino acid profiles, this could theoretically be overcome by blending plant-based proteins with complementary amino acid profiles. We compared the post-exercise MyoPS response following the ingestion of a novel plant-derived protein blend with an isonitrogenous bolus of whey protein. Methods Ten healthy, resistance trained, young adults (male/female: 8/2; age: 26 ± 6 y; BMI: 24 ± 3 kg·m-2) received a primed continuous infusion of L-[ring-2H5]-phenylalanine and completed a bout of bilateral leg resistance exercise before ingesting 32 g protein from whey (WHEY) or a plant protein blend (BLEND; 39.5% pea, 39.5% brown rice, 21.0% canola) in a randomized, double-blind crossover fashion. Blood and muscle samples were collected at rest, and 2 and 4 h after exercise and protein ingestion, to assess plasma amino acid concentrations, and postabsorptive and post-exercise MyoPS rates. Results Plasma essential amino acid availability over the 4 h postprandial post-exercise period was ~44% higher in WHEY compared with BLEND (P = 0.04). From equivalent postabsorptive values (WHEY, 0.042 ± 0.020%·h−1; BLEND, 0.043 ± 0.015%·h−1) MyoPS rates increased following exercise and protein ingestion (time effect; P 0.05). Conclusions Ingestion of a novel plant-based protein blend stimulates post-exercise MyoPS to an equivalent extent as a whey protein, demonstrating the utility of plant protein blends to optimize post-exercise skeletal muscle reconditioning
Can Arbuscular Mycorrhizal Fungi Reduce the Growth of Agricultural Weeds?
BACKGROUND: Arbuscular mycorrhizal fungi (AMF) are known for their beneficial effects on plants. However, there is increasing evidence that some ruderal plants, including several agricultural weeds, respond negatively to AMF colonization. Here, we investigated the effect of AMF on the growth of individual weed species and on weed-crop interactions. METHODOLOGY/PRINCIPAL FINDINGS: First, under controlled glasshouse conditions, we screened growth responses of nine weed species and three crops to a widespread AMF, Glomus intraradices. None of the weeds screened showed a significant positive mycorrhizal growth response and four weed species were significantly reduced by the AMF (growth responses between -22 and -35%). In a subsequent experiment, we selected three of the negatively responding weed species--Echinochloa crus-galli, Setaria viridis and Solanum nigrum--and analyzed their responses to a combination of three AMF (Glomus intraradices, Glomus mosseae and Glomus claroideum). Finally, we tested whether the presence of a crop (maize) enhanced the suppressive effect of AMF on weeds. We found that the growth of the three selected weed species was also reduced by a combination of AMF and that the presence of maize amplified the negative effect of AMF on the growth of E. crus-galli. CONCLUSIONS/SIGNIFICANCE: Our results show that AMF can negatively influence the growth of some weed species indicating that AMF have the potential to act as determinants of weed community structure. Furthermore, mycorrhizal weed growth reductions can be amplified in the presence of a crop. Previous studies have shown that AMF provide a number of beneficial ecosystem services. Taken together with our current results, the maintenance and promotion of AMF activity may thereby contribute to sustainable management of agroecosystems. However, in order to further the practical and ecological relevance of our findings, additional experiments should be performed under field conditions
The Netherlands Arrhythmogenic Cardiomyopathy Registry: design and status update
Background
Clinical research on arrhythmogenic cardiomyopathy (ACM) is typically limited by small patient numbers, retrospective study designs, and inconsistent definitions.
Aim
To create a large national ACM patient cohort with a vast amount of uniformly collected high-quality data that is readily available for future research.
Methods
This is a multicentre, longitudinal, observational cohort study that includes (1) patients with a definite ACM diagnosis, (2) at-risk relatives of ACM patients, and (3) ACM-associated mutation carriers. At baseline and every follow-up visit, a medical history as well information regarding (non-)invasive tests is collected (e. g. electrocardiograms, Holter recordings, imaging and electrophysiological studies, pathology reports, etc.). Outcome data include (non-)sustained ventricular and atrial arrhythmias, heart failure, and (cardiac) death. Data are collected on a research electronic data capture (REDCap) platform in which every participating centre has its own restricted data access group, thus empowering local studies while facilitating data sharing.
Discussion
The Netherlands ACM Registry is a national observational cohort study of ACM patients and relatives. Prospective and retrospective data are obtained at multiple time points, enabling both cross-sectional and longitudinal research in a hypothesis-generating approach that extends beyond one specific research question. In so doing, this registry aims to (1) increase the scientific knowledge base on disease mechanisms, genetics, and novel diagnostic and treatment strategies of ACM; and (2) provide education for physicians and patients concerning ACM, e. g. through our website (www.acmregistry.nl) and patient conferences
- …