34 research outputs found

    Cardiosphere-derived cells suppress allogeneic lymphocytes by production of PGE2 acting via the EP4 receptor

    Get PDF
    derived cells (CDCs) are a cardiac progenitor cell population, which have been shown to possess cardiac regenerative properties and can improve heart function in a variety of cardiac diseases. Studies in large animal models have predominantly focussed on using autologous cells for safety, however allogeneic cell banks would allow for a practical, cost-effective and efficient use in a clinical setting. The aim of this work was to determine the immunomodulatory status of these cells using CDCs and lymphocytes from 5 dogs. CDCs expressed MHC I but not MHC II molecules and in mixed lymphocyte reactions demonstrated a lack of lymphocyte proliferation in response to MHC-mismatched CDCs. Furthermore, MHC-mismatched CDCs suppressed lymphocyte proliferation and activation in response to Concanavalin A. Transwell experiments demonstrated that this was predominantly due to direct cell-cell contact in addition to soluble mediators whereby CDCs produced high levels of PGE2 under inflammatory conditions. This led to down-regulation of CD25 expression on lymphocytes via the EP4 receptor. Blocking prostaglandin synthesis restored both, proliferation and activation (measured via CD25 expression) of stimulated lymphocytes. We demonstrated for the first time in a large animal model that CDCs inhibit proliferation in allo-reactive lymphocytes and have potent immunosuppressive activity mediated via PGE2

    Increased Renal Methylglyoxal Formation with Down-Regulation of PGC-1α-FBPase Pathway in Cystathionine γ-Lyase Knockout Mice

    Get PDF
    We have previously reported that hydrogen sulfide (H2S), a gasotransmitter and vasodilator has cytoprotective properties against methylglyoxal (MG), a reactive glucose metabolite associated with diabetes and hypertension. Recently, H2S was shown to up-regulate peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α, a key gluconeogenic regulator that enhances the gene expression of the rate-limiting gluconeogenic enzyme, fructose-1,6-bisphosphatase (FBPase). Thus, we sought to determine whether MG levels and gluconeogenic enzymes are altered in kidneys of 6–22 week-old cystathionine γ-lyase knockout (CSE-/-; H2S-producing enzyme) male mice. MG levels were determined by HPLC. Plasma glucose levels were measured by an assay kit. Q-PCR was used to measure mRNA levels of PGC-1α and FBPase-1 and -2. Coupled-enzymatic assays were used to determine FBPase activity, or triosephosphate levels. Experimental controls were either age-matched wild type mice or untreated rat A-10 cells. Interestingly, we observed a significant decrease in plasma glucose levels along with a significant increase in plasma MG levels in all three age groups (6–8, 14–16, and 20–22 week-old) of the CSE-/- mice. Indeed, renal MG and triosephosphates were increased, whereas renal FBPase activity, along with its mRNA levels, were decreased in the CSE-/- mice. The decreased FBPase activity was accompanied by lower levels of its product, fructose-6-phosphate, and higher levels of its substrate, fructose-1,6-bisphosphate in renal extracts from the CSE-/- mice. In agreement, PGC-1α mRNA levels were also significantly down-regulated in 6-22 week-old CSE-/- mice. Furthermore, FBPase-1 and -2 mRNA levels were reduced in aorta tissues from CSE-/- mice. Administration of NaHS, a H2S donor, increased the gene expression of PGC-1α and FBPase-1 and -2 in cultured rat A-10 cells. In conclusion, overproduction of MG in CSE-/- mice is due to a H2S-mediated down-regulation of the PGC-1α-FBPase pathway, further suggesting the important role of H2S in the regulation of glucose metabolism and MG generation

    Poly(ethylmethacrylate-co-diethylaminoethyl acrylate) coating improves endothelial re-population, bio-mechanical and anti-thrombogenic properties of decellularized carotid arteries for blood vessel replacement

    Get PDF
    Decellularized vascular scaffolds are promising materials for vessel replacements. However, despite the natural origin of decellularized vessels, issues such as biomechanical incompatibility, immunogenicity risks and the hazards of thrombus formation, still need to be addressed. In this study, we coated decellularized vessels obtained from porcine carotid arteries with poly (ethylmethacrylate-co-diethylaminoethylacrylate) (8g7) with the purpose of improving endothelial coverage and minimizing platelet attachment while enhancing the mechanical properties of the decellularized vascular scaffolds. The polymer facilitated binding of endothelial cells (ECs) with high affinity and also induced endothelial cell capillary tube formation. In addition, platelets showed reduced adhesion on the polymer under flow conditions. Moreover, the coating of the decellularized arteries improved biomechanical properties by increasing its tensile strength and load. In addition, after 5 days in culture, ECs seeded on the luminal surface of 8g7-coated decellularized arteries showed good regeneration of the endothelium. Overall, this study shows that polymer coating of decellularized vessels provides a new strategy to improve re-endothelialization of vascular grafts, maintaining or enhancing mechanical properties while reducing the risk of thrombogenesis. These results could have potential applications in improving tissue-engineered vascular grafts for cardiovascular therapies with small caliber vessels

    Sea Urchins Predation Facilitates Coral Invasion in a Marine Reserve

    Get PDF
    Macroalgae is the dominant trophic group on Mediterranean infralittoral rocky bottoms, whereas zooxanthellate corals are extremely rare. However, in recent years, the invasive coral Oculina patagonica appears to be increasing its abundance through unknown means. Here we examine the pattern of variation of this species at a marine reserve between 2002 and 2010 and contribute to the understanding of the mechanisms that allow its current increase. Because indirect interactions between species can play a relevant role in the establishment of species, a parallel assessment of the sea urchin Paracentrotus lividus, the main herbivorous invertebrate in this habitat and thus a key species, was conducted. O. patagonica has shown a 3-fold increase in abundance over the last 8 years and has become the most abundant invertebrate in the shallow waters of the marine reserve, matching some dominant erect macroalgae in abundance. High recruitment played an important role in this increasing coral abundance. The results from this study provide compelling evidence that the increase in sea urchin abundance may be one of the main drivers of the observed increase in coral abundance. Sea urchins overgraze macroalgae and create barren patches in the space-limited macroalgal community that subsequently facilitate coral recruitment. This study indicates that trophic interactions contributed to the success of an invasive coral in the Mediterranean because sea urchins grazing activity indirectly facilitated expansion of the coral. Current coral abundance at the marine reserve has ended the monopolization of algae in rocky infralittoral assemblages, an event that could greatly modify both the underwater seascape and the sources of primary production in the ecosystem

    The genus Piscirickettsia

    No full text
    The genus Piscirickettsia is part of the Piscirickettsiaceae family, belonging to the Gammaproteobacteria class within the Thiotrichales order. The family contains seven phylogenetically related genera (Cycloclasticus, Hydrogenovibrio, Sulfurivirga, Thioalkalimicrobium, Methylophaga, Thiomicrospira, and Piscirickettsia), with highly diverse characteristics, making them very different from one another. The genus Piscirickettsia comprises a single species called Piscirickettsia salmonis, a Gram-negative facultative intracellular fish pathogen that significantly affects the salmon industry. Since its first isolation in Chile in 1989, the bacterium has been reported in Norway, Scotland, Greece, Canada, and the USA, among others. To date, the complete genome sequence of P. salmonis has not been reported, and relevant aspects of its metabolism, virulence, and life cycle are still poorly understood
    corecore