4,260 research outputs found

    Synthesis of isoindolinones by Pd-catalyzed coupling between N-methoxybenzamide and styrene derivatives

    Get PDF
    An atom-economical protocol for a tandem process involving Fujiwara-Moritani-aza-Wacker reactions has been developed for the Pd-catalyzed coupling between N-methoxy benzamide with styrene derivatives. The generality of the methodology was demonstrated by the synthesis of a library of twenty-five 3-benzylidene isoindolinones in moderate to good yields. A further twenty-two 3-benzyl derivatives were obtained by telescoping the process with a catalytic hydrogenation reaction

    Dynamic assessment of shear connectors in slab-girder bridges

    Get PDF
    2006-2007 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Evaluation of bridge load carrying capacity using updated finite element model and nonlinear analysis

    Get PDF
    2012-2013 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Condition assessment of shear connectors in slab-girder bridges via vibration measurements

    Get PDF
    2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Temporal Model Adaptation for Person Re-Identification

    Full text link
    Person re-identification is an open and challenging problem in computer vision. Majority of the efforts have been spent either to design the best feature representation or to learn the optimal matching metric. Most approaches have neglected the problem of adapting the selected features or the learned model over time. To address such a problem, we propose a temporal model adaptation scheme with human in the loop. We first introduce a similarity-dissimilarity learning method which can be trained in an incremental fashion by means of a stochastic alternating directions methods of multipliers optimization procedure. Then, to achieve temporal adaptation with limited human effort, we exploit a graph-based approach to present the user only the most informative probe-gallery matches that should be used to update the model. Results on three datasets have shown that our approach performs on par or even better than state-of-the-art approaches while reducing the manual pairwise labeling effort by about 80%

    Crack-Like Processes Governing the Onset of Frictional Slip

    Full text link
    We perform real-time measurements of the net contact area between two blocks of like material at the onset of frictional slip. We show that the process of interface detachment, which immediately precedes the inception of frictional sliding, is governed by three different types of detachment fronts. These crack-like detachment fronts differ by both their propagation velocities and by the amount of net contact surface reduction caused by their passage. The most rapid fronts propagate at intersonic velocities but generate a negligible reduction in contact area across the interface. Sub-Rayleigh fronts are crack-like modes which propagate at velocities up to the Rayleigh wave speed, VR, and give rise to an approximate 10% reduction in net contact area. The most efficient contact area reduction (~20%) is precipitated by the passage of slow detachment fronts. These fronts propagate at anomalously slow velocities, which are over an order of magnitude lower than VR yet orders of magnitude higher than other characteristic velocity scales such as either slip or loading velocities. Slow fronts are generated, in conjunction with intersonic fronts, by the sudden arrest of sub-Rayleigh fronts. No overall sliding of the interface occurs until either of the slower two fronts traverses the entire interface, and motion at the leading edge of the interface is initiated. Slip at the trailing edge of the interface accompanies the motion of both the slow and sub-Rayleigh fronts. We might expect these modes to be important in both fault nucleation and earthquake dynamics.Comment: 19 page, 5 figures, to appear in International Journal of Fractur

    Committee Machines—A Universal Method to Deal with Non-Idealities in Memristor-Based Neural Networks

    Get PDF
    Arti ficial neural networks are notoriously power- and time-consuming when implemented on conventional von Neumann computing systems. Consequently, recent years have seen an emergence of research in machine learning hardware that strives to bring memory and computing closer together. A popular approach is to realise artifi cial neural networks in hardware by implementing their synaptic weights using memristive devices. However, various device- and system-level non-idealities usually prevent these physical implementations from achieving high inference accuracy. We suggest applying a well-known concept in computer science|committee machines|in the context of memristor-based neural networks. Using simulations and experimental data from three different types of memristive devices, we show that committee machines employing ensemble averaging can successfully increase inference accuracy in physically implemented neural networks that suffer from faulty devices, device-to-device variability, random telegraph noise and line resistance. Importantly, we demonstrate that the accuracy can be improved even without increasing the total number of memristors

    Spin-Rotation Symmetry Breaking in the Superconducting State of CuxBi2Se3

    Full text link
    Spontaneous symmetry breaking is an important concept for understanding physics ranging from the elementary particles to states of matter. For example, the superconducting state breaks global gauge symmetry, and unconventional superconductors can break additional symmetries. In particular, spin rotational symmetry is expected to be broken in spin-triplet superconductors. However, experimental evidence for such symmetry breaking has not been conclusively obtained so far in any candidate compounds. Here, by 77Se nuclear magnetic resonance measurements, we show that spin rotation symmetry is spontaneously broken in the hexagonal plane of the electron-doped topological insulator Cu0.3Bi2Se3 below the superconducting transition temperature Tc=3.4 K. Our results not only establish spin-triplet superconductivity in this compound, but may also serve to lay a foundation for the research of topological superconductivity

    A functional polymorphism in the SPINK5 gene is associated with asthma in a Chinese Han Population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutation in <it>SPINK5 </it>causes Netherton syndrome, a rare recessive skin disease that is accompanied by severe atopic manifestations including atopic dermatitis, allergic rhinitis, asthma, high serum IgE and hypereosinophilia. Recently, single nucleotide polymorphism (SNP) of the <it>SPINK5 </it>was shown to be significantly associated with atopy, atopic dermatitis, asthma, and total serum IgE. In order to determine the role of the <it>SPINK5 </it>in the development of asthma, a case-control study including 669 asthma patients and 711 healthy controls in Han Chinese was conducted.</p> <p>Methods</p> <p>Using PCR-RFLP assay, we genotyped one promoter SNP, -206G>A, and four nonsynonymous SNPs, 1103A>G (Asn368Ser), 1156G>A (Asp386Asn), 1258G>A (Glu420Lys), and 2475G>T (Glu825Asp). Also, we analyzed the functional significance of -206G>A using the luciferase reporter assay and electrophoresis mobility shift assay.</p> <p>Results</p> <p>we found that the G allele at SNP -206G>A was associated with increased asthma susceptibility in our study population (p = 0.002, odds ratio 1.34, 95% confidence interval 1.11–1.60). There was no significant association between any of four nonsynonymous SNPs and asthma. The A allele at -206G>A has a significantly higher transcriptional activity than the G allele. Electrophoresis mobility shift assay also showed a significantly higher binding efficiency of nuclear protein to the A allele compared with the G allele.</p> <p>Conclusion</p> <p>Our findings indicate that the -206G>A polymorphism in the <it>SPINK5 </it>is associated with asthma susceptibility in a Chinese Han population.</p

    A Dynamic Model of Interactions of Ca^(2+), Calmodulin, and Catalytic Subunits of Ca^(2+)/Calmodulin-Dependent Protein Kinase II

    Get PDF
    During the acquisition of memories, influx of Ca^(2+) into the postsynaptic spine through the pores of activated N-methyl-D-aspartate-type glutamate receptors triggers processes that change the strength of excitatory synapses. The pattern of Ca^(2+) influx during the first few seconds of activity is interpreted within the Ca^(2+)-dependent signaling network such that synaptic strength is eventually either potentiated or depressed. Many of the critical signaling enzymes that control synaptic plasticity, including Ca^(2+)/calmodulin-dependent protein kinase II (CaMKII), are regulated by calmodulin, a small protein that can bind up to 4 Ca^(2+) ions. As a first step toward clarifying how the Ca^(2+)-signaling network decides between potentiation or depression, we have created a kinetic model of the interactions of Ca^(2+), calmodulin, and CaMKII that represents our best understanding of the dynamics of these interactions under conditions that resemble those in a postsynaptic spine. We constrained parameters of the model from data in the literature, or from our own measurements, and then predicted time courses of activation and autophosphorylation of CaMKII under a variety of conditions. Simulations showed that species of calmodulin with fewer than four bound Ca^(2+) play a significant role in activation of CaMKII in the physiological regime, supporting the notion that processing ofCa^(2+) signals in a spine involves competition among target enzymes for binding to unsaturated species of CaM in an environment in which the concentration of Ca^(2+) is fluctuating rapidly. Indeed, we showed that dependence of activation on the frequency of Ca^(2+) transients arises from the kinetics of interaction of fluctuating Ca^(2+) with calmodulin/CaMKII complexes. We used parameter sensitivity analysis to identify which parameters will be most beneficial to measure more carefully to improve the accuracy of predictions. This model provides a quantitative base from which to build more complex dynamic models of postsynaptic signal transduction during learning
    corecore