42 research outputs found

    Effects of microbe activity

    Get PDF

    Closed-Loop Recycling of Copper from Waste Printed Circuit Boards Using Bioleaching and Electrowinning Processes

    Get PDF
    International audienceIn the present study, a model of closed-loop recycling of copper from PCBs is demonstrated, which involves the sequential application of bioleaching and electrowinning to selectively extract copper. This approach is proposed as part of the solution to resolve the challenging ever-increasing accumulation of electronic waste, e-waste, in the environment. This work is targeting copper, the most abundant metal in e-waste that represents up to 20% by weight of printed circuit boards (PCBs). In the first stage, bioleaching was tested for different pulp densities (0.25–1.00% w/v) and successfully used to extract multiple metals from PCBs using the acidophilic bacterium, Acidithiobacillus ferrooxidans. In the second stage, the method focused on the recovery of copper from the bioleachate by electrowinning. Metallic copper foils were formed, and the results demonstrated that 75.8% of copper available in PCBs had been recovered as a high quality copper foil, with 99 + % purity, as determined by energy dispersive X-ray analysis and Inductively-Coupled Plasma Optical Emission Spectrometry. This model of copper extraction, combining bioleaching and electrowinning, demonstrates a closed-loop method of recycling that illustrates the application of bioleaching in the circular economy. The copper foils have the potential to be reused, to form new, high value copper clad laminate for the production of complex printed circuit boards for the electronics manufacturing industry. Graphic Abstract: [Figure not available: see fulltext.] © 2020, The Author(s)

    Wnt pathway reprogramming during human embryonal carcinoma differentiation and potential for therapeutic targeting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Testicular germ cell tumors (TGCTs) are classified as seminonas or non-seminomas of which a major subset is embryonal carcinoma (EC) that can differentiate into diverse tissues. The pluripotent nature of human ECs resembles that of embryonic stem (ES) cells. Many Wnt signalling species are regulated during differentiation of TGCT-derived EC cells. This study comprehensively investigated expression profiles of Wnt signalling components regulated during induced differentiation of EC cells and explored the role of key components in maintaining pluripotency.</p> <p>Methods</p> <p>Human embryonal carcinoma cells were stably infected with a lentiviral construct carrying a canonical Wnt responsive reporter to assess Wnt signalling activity following induced differentiation. Cells were differentiated with all-<it>trans </it>retinoic acid (RA) or by targeted repression of pluripotency factor, POU5F1. A Wnt pathway real-time-PCR array was used to evaluate changes in gene expression as cells differentiated. Highlighted Wnt pathway genes were then specifically repressed using siRNA or stable shRNA and transfected EC cells were assessed for proliferation, differentiation status and levels of core pluripotency genes.</p> <p>Results</p> <p>Canonical Wnt signalling activity was low basally in undifferentiated EC cells, but substantially increased with induced differentiation. Wnt pathway gene expression levels were compared during induced differentiation and many components were altered including ligands (WNT2B), receptors (FZD5, FZD6, FZD10), secreted inhibitors (SFRP4, SFRP1), and other effectors of Wnt signalling (FRAT2, DAAM1, PITX2, Porcupine). Independent repression of FZD5, FZD7 and WNT5A using transient as well as stable methods of RNA interference (RNAi) inhibited cell growth of pluripotent NT2/D1 human EC cells, but did not appreciably induce differentiation or repress key pluripotency genes. Silencing of FZD7 gave the greatest growth suppression in all human EC cell lines tested including NT2/D1, NT2/D1-R1, Tera-1 and 833K cells.</p> <p>Conclusion</p> <p>During induced differentiation of human EC cells, the Wnt signalling pathway is reprogrammed and canonical Wnt signalling induced. Specific species regulating non-canonical Wnt signalling conferred growth inhibition when targeted for repression in these EC cells. Notably, FZD7 repression significantly inhibited growth of human EC cells and is a promising therapeutic target for TGCTs.</p

    Induction chemotherapy followed by chemoradiotherapy versus chemoradiotherapy alone as neoadjuvant treatment for locally recurrent rectal cancer: study protocol of a multicentre, open-label, parallel-arms, randomized controlled study (PelvEx II)

    Get PDF
    Background A resection with clear margins (R0 resection) is the most important prognostic factor in patients with locally recurrent rectal cancer (LRRC). However, this is achieved in only 60 per cent of patients. The aim of this study is to investigate whether the addition of induction chemotherapy to neoadjuvant chemo(re)irradiation improves the R0 resection rate in LRRC. Methods This multicentre, international, open-label, phase III, parallel-arms study will enrol 364 patients with resectable LRRC after previous partial or total mesorectal resection without synchronous distant metastases or recent chemo- and/or radiotherapy treatment. Patients will be randomized to receive either induction chemotherapy (three 3-week cycles of CAPOX (capecitabine, oxaliplatin), four 2-week cycles of FOLFOX (5-fluorouracil, leucovorin, oxaliplatin) or FOLFORI (5-fluorouracil, leucovorin, irinotecan)) followed by neoadjuvant chemoradiotherapy and surgery (experimental arm) or neoadjuvant chemoradiotherapy and surgery alone (control arm). Tumours will be restaged using MRI and, in the experimental arm, a further cycle of CAPOX or two cycles of FOLFOX/FOLFIRI will be administered before chemoradiotherapy in case of stable or responsive disease. The radiotherapy dose will be 25 × 2.0 Gy or 28 × 1.8 Gy in radiotherapy-naive patients, and 15 × 2.0 Gy in previously irradiated patients. The concomitant chemotherapy agent will be capecitabine administered twice daily at a dose of 825 mg/m2 on radiotherapy days. The primary endpoint of the study is the R0 resection rate. Secondary endpoints are long-term oncological outcomes, radiological and pathological response, toxicity, postoperative complications, costs, and quality of life. Discussion This trial protocol describes the PelvEx II study. PelvEx II, designed as a multicentre, open-label, phase III, parallel-arms study, is the first randomized study to compare induction chemotherapy followed by neoadjuvant chemo(re)irradiation and surgery with neoadjuvant chemo(re)irradiation and surgery alone in patients with locally recurrent rectal cancer, with the aim of improving the number of R0 resections

    Historical Archaeologies of the American West

    Full text link

    Effects of microbe activity

    No full text
    corecore