52 research outputs found

    Host Reproductive Phenology Drives Seasonal Patterns of Host Use in Mosquitoes

    Get PDF
    Seasonal shifts in host use by mosquitoes from birds to mammals drive the timing and intensity of annual epidemics of mosquito-borne viruses, such as West Nile virus, in North America. The biological mechanism underlying these shifts has been a matter of debate, with hypotheses falling into two camps: (1) the shift is driven by changes in host abundance, or (2) the shift is driven by seasonal changes in the foraging behavior of mosquitoes. Here we explored the idea that seasonal changes in host use by mosquitoes are driven by temporal patterns of host reproduction. We investigated the relationship between seasonal patterns of host use by mosquitoes and host reproductive phenology by examining a seven-year dataset of blood meal identifications from a site in Tuskegee National Forest, Alabama USA and data on reproduction from the most commonly utilized endothermic (white-tailed deer, great blue heron, yellow-crowned night heron) and ectothermic (frogs) hosts. Our analysis revealed that feeding on each host peaked during periods of reproductive activity. Specifically, mosquitoes utilized herons in the spring and early summer, during periods of peak nest occupancy, whereas deer were fed upon most during the late summer and fall, the period corresponding to the peak in births for deer. For frogs, however, feeding on early- and late-season breeders paralleled peaks in male vocalization. We demonstrate for the first time that seasonal patterns of host use by mosquitoes track the reproductive phenology of the hosts. Peaks in relative mosquito feeding on each host during reproductive phases are likely the result of increased tolerance and decreased vigilance to attacking mosquitoes by nestlings and brooding adults (avian hosts), quiescent young (avian and mammalian hosts), and mate-seeking males (frogs)

    Identification of a Highly Conserved H1 Subtype-Specific Epitope with Diagnostic Potential in the Hemagglutinin Protein of Influenza A Virus

    Get PDF
    Subtype specificity of influenza A virus (IAV) is determined by its two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA). For HA, 16 distinct subtypes (H1–H16) exist, while nine exist for NA. The epidemic strains of H1N1 IAV change frequently and cause annual seasonal epidemics as well as occasional pandemics, such as the notorious 1918 influenza pandemic. The recent introduction of pandemic A/H1N1 IAV (H1N1pdm virus) into humans re-emphasizes the public health concern about H1N1 IAV. Several studies have identified conserved epitopes within specific HA subtypes that can be used for diagnostics. However, immune specific epitopes in H1N1 IAV have not been completely assessed. In this study, linear epitopes on the H1N1pdm viral HA protein were identified by peptide scanning using libraries of overlapping peptides against convalescent sera from H1N1pdm patients. One epitope, P5 (aa 58–72) was found to be immunodominant in patients and to evoke high titer antibodies in mice. Multiple sequence alignments and in silico coverage analysis showed that this epitope is highly conserved in influenza H1 HA [with a coverage of 91.6% (9,860/10,767)] and almost completely absent in other subtypes [with a coverage of 3.3% (792/23,895)]. This previously unidentified linear epitope is located outside the five well-recognized antigenic sites in HA. A peptide ELISA method based on this epitope was developed and showed high correlation (χ2 = 51.81, P<0.01, Pearson correlation coefficient R = 0.741) with a hemagglutination inhibition test. The highly conserved H1 subtype-specific immunodominant epitope may form the basis for developing novel assays for sero-diagnosis and active surveillance against H1N1 IAVs

    Identification of a Highly Conserved H1 Subtype-Specific Epitope with Diagnostic Potential in the Hemagglutinin Protein of Influenza A Virus

    Get PDF
    Subtype specificity of influenza A virus (IAV) is determined by its two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA). For HA, 16 distinct subtypes (H1–H16) exist, while nine exist for NA. The epidemic strains of H1N1 IAV change frequently and cause annual seasonal epidemics as well as occasional pandemics, such as the notorious 1918 influenza pandemic. The recent introduction of pandemic A/H1N1 IAV (H1N1pdm virus) into humans re-emphasizes the public health concern about H1N1 IAV. Several studies have identified conserved epitopes within specific HA subtypes that can be used for diagnostics. However, immune specific epitopes in H1N1 IAV have not been completely assessed. In this study, linear epitopes on the H1N1pdm viral HA protein were identified by peptide scanning using libraries of overlapping peptides against convalescent sera from H1N1pdm patients. One epitope, P5 (aa 58–72) was found to be immunodominant in patients and to evoke high titer antibodies in mice. Multiple sequence alignments and in silico coverage analysis showed that this epitope is highly conserved in influenza H1 HA [with a coverage of 91.6% (9,860/10,767)] and almost completely absent in other subtypes [with a coverage of 3.3% (792/23,895)]. This previously unidentified linear epitope is located outside the five well-recognized antigenic sites in HA. A peptide ELISA method based on this epitope was developed and showed high correlation (χ2 = 51.81, P<0.01, Pearson correlation coefficient R = 0.741) with a hemagglutination inhibition test. The highly conserved H1 subtype-specific immunodominant epitope may form the basis for developing novel assays for sero-diagnosis and active surveillance against H1N1 IAVs

    Generation, Characterization and Epitope Mapping of Two Neutralizing and Protective Human Recombinant Antibodies against Influenza A H5N1 Viruses

    Get PDF
    The development of new therapeutic targets and strategies to control highly pathogenic avian influenza (HPAI) H5N1 virus infection in humans is urgently needed. Broadly cross-neutralizing recombinant human antibodies obtained from the survivors of H5N1 avian influenza provide an important role in immunotherapy for human H5N1 virus infection and definition of the critical epitopes for vaccine development.We have characterized two recombinant baculovirus-expressed human antibodies (rhAbs), AVFluIgG01 and AVFluIgG03, generated by screening a Fab antibody phage library derived from a patient recovered from infection with a highly pathogenic avian influenza A H5N1 clade 2.3 virus. AVFluIgG01 cross-neutralized the most of clade 0, clade 1, and clade 2 viruses tested, in contrast, AVFluIgG03 only neutralized clade 2 viruses. Passive immunization of mice with either AVFluIgG01 or AVFluIgG03 antibody resulted in protection from a lethal H5N1 clade 2.3 virus infection. Furthermore, through epitope mapping, we identify two distinct epitopes on H5 HA molecule recognized by these rhAbs and demonstrate their potential to protect against a lethal H5N1 virus infection in a mouse model.Importantly, localization of the epitopes recognized by these two neutralizing and protective antibodies has provided, for the first time, insight into the human antibody responses to H5N1 viruses which contribute to the H5 immunity in the recovered patient. These results highlight the potential of a rhAbs treatment strategy for human H5N1 virus infection and provide new insight for the development of effective H5N1 pandemic vaccines

    Tissue adhesives for meniscus tear repair: an overview of current advances and prospects for future clinical solutions

    Full text link

    Comparison of Antiviral Activity between IgA and IgG Specific to Influenza Virus Hemagglutinin: Increased Potential of IgA for Heterosubtypic Immunity

    Get PDF
    Both IgA and IgG antibodies are known to play important roles in protection against influenza virus infection. While IgG is the major isotype induced systemically, IgA is predominant in mucosal tissues, including the upper respiratory tract. Although IgA antibodies are believed to have unique advantages in mucosal immunity, information on direct comparisons of the in vitro antiviral activities of IgA and IgG antibodies recognizing the same epitope is limited. In this study, we demonstrate differences in antiviral activities between these isotypes using monoclonal IgA and IgG antibodies obtained from hybridomas of the same origin. Polymeric IgA-producing hybridoma cells were successfully subcloned from those originally producing monoclonal antibody S139/1, a hemaggulutinin (HA)-specific IgG that was generated against an influenza A virus strain of the H3 subtype but had cross-neutralizing activities against the H1, H2, H13, and H16 subtypes. These monoclonal S139/1 IgA and IgG antibodies were assumed to recognize the same epitope and thus used to compare their antiviral activities. We found that both S139/1 IgA and IgG antibodies strongly bound to the homologous H3 virus in an enzyme-linked immunosorbent assay, and there were no significant differences in their hemagglutination-inhibiting and neutralizing activities against the H3 virus. In contrast, S139/1 IgA showed remarkably higher cross-binding to and antiviral activities against H1, H2, and H13 viruses than S139/1 IgG. It was also noted that S139/1 IgA, but not IgG, drastically suppressed the extracellular release of the viruses from infected cells. Electron microscopy revealed that S139/1 IgA deposited newly produced viral particles on the cell surface, most likely by tethering the particles. These results suggest that anti-HA IgA has greater potential to prevent influenza A virus infection than IgG antibodies, likely due to increased avidity conferred by its multivalency, and that this advantage may be particularly important for heterosubtypic immunity
    corecore