42 research outputs found

    High genetic diversity at the extreme range edge: nucleotide variation at nuclear loci in Scots pine (Pinus sylvestris L.) in Scotland

    Get PDF
    Nucleotide polymorphism at 12 nuclear loci was studied in Scots pine populations across an environmental gradient in Scotland, to evaluate the impacts of demographic history and selection on genetic diversity. At eight loci, diversity patterns were compared between Scottish and continental European populations. At these loci, a similar level of diversity (θsil=~0.01) was found in Scottish vs mainland European populations, contrary to expectations for recent colonization, however, less rapid decay of linkage disequilibrium was observed in the former (ρ=0.0086±0.0009, ρ=0.0245±0.0022, respectively). Scottish populations also showed a deficit of rare nucleotide variants (multi-locus Tajima's D=0.316 vs D=−0.379) and differed significantly from mainland populations in allelic frequency and/or haplotype structure at several loci. Within Scotland, western populations showed slightly reduced nucleotide diversity (πtot=0.0068) compared with those from the south and east (0.0079 and 0.0083, respectively) and about three times higher recombination to diversity ratio (ρ/θ=0.71 vs 0.15 and 0.18, respectively). By comparison with results from coalescent simulations, the observed allelic frequency spectrum in the western populations was compatible with a relatively recent bottleneck (0.00175 × 4Ne generations) that reduced the population to about 2% of the present size. However, heterogeneity in the allelic frequency distribution among geographical regions in Scotland suggests that subsequent admixture of populations with different demographic histories may also have played a role

    The Clathrin Assembly Protein PICALM Is Required for Erythroid Maturation and Transferrin Internalization in Mice

    Get PDF
    Phosphatidylinositol binding clathrin assembly protein (PICALM), also known as clathrin assembly lymphoid myeloid leukemia protein (CALM), was originally isolated as part of the fusion gene CALM/AF10, which results from the chromosomal translocation t(10;11)(p13;q14). CALM is sufficient to drive clathrin assembly in vitro on lipid monolayers and regulates clathrin-coated budding and the size and shape of the vesicles at the plasma membrane. However, the physiological role of CALM has yet to be elucidated. Here, the role of CALM in vivo was investigated using CALM-deficient mice. CALM-deficient mice exhibited retarded growth in utero and were dwarfed throughout their shortened life-spans. Moreover, CALM-deficient mice suffered from severe anemia, and the maturation and iron content in erythroid precursors were severely impaired. CALM-deficient erythroid cells and embryonic fibroblasts exhibited impaired clathrin-mediated endocytosis of transferrin. These results indicate that CALM is required for erythroid maturation and transferrin internalization in mice

    Neurotensin Receptor 1 Gene (NTSR1) Polymorphism Is Associated with Working Memory

    Get PDF
    BACKGROUND: Recent molecular genetics studies showed significant associations between dopamine-related genes (including genes for dopamine receptors, transporters, and degradation) and working memory, but little is known about the role of genes for dopamine modulation, such as those related to neurotensin (NT), in working memory. A recent animal study has suggested that NT antagonist administration impaired working memory in a learning task. The current study examined associations between NT genes and working memory among humans. METHODS: Four hundred and sixty healthy undergraduate students were assessed with a 2-back working memory paradigm. 5 SNPs in the NTSR1 gene were genotyped. 5 ANOVA tests were conducted to examine whether and how working memory differed by NTSR1 genotype, with each SNP variant as the independent variable and the average accuracy on the working memory task as the dependent variable. RESULTS: ANOVA results suggested that two SNPs in the NTSR1 gene (rs4334545 and rs6090453) were significantly associated with working memory. These results survived corrections for multiple comparisons. CONCLUSIONS: Our results demonstrated that NTSR1 SNP polymorphisms were significantly associated with variance in working memory performance among healthy adults. This result extended previous rodent studies showing that the NT deficiency impairs the working memory function. Future research should replicate our findings and extend to an examination of other dopamine modulators

    Translational Value of Drug Discrimination with Typical and Atypical Antipsychotic Drugs

    No full text
    This chapter focuses on the translational value of drug discrimination as a preclinical assay for drug development. In particular, the importance of two factors, i.e., training dose and species, for drug discrimination studies with the atypical antipsychotic clozapine is examined. Serotonin receptors appear to be an important pharmacological mechanism mediating clozapine’s discriminative cue in both rats and mice, although differences are clearly evident as antagonism of cholinergic muscarinic receptors is important in rats at a higher training dose (5.0 mg/kg) of clozapine, but not at a lower training dose (1.25 mg/kg). Antagonism of α1 adrenoceptors is a sufficient mechanism in C57BL/6 and 129S2 mice to mimic clozapine’s cue, but not in DBA/2 and B6129S mice, and only produces partial substitution in low-dose clozapine discrimination in rats. Dopamine antagonism produces partial substitution for clozapine in DBA/2, 129S2, and B6129S mice, but not in C57BL/6 mice, and partial substitution is seen with D4 antagonism in low-dose clozapine drug discrimination in rats. Thus, it is evident that clozapine has a complex mixture of receptor contributions towards its discriminative cue based on the data from the four mouse strains that have been tested that is similar to the results from rat studies. A further examination of antipsychotic stimulus properties in humans, particularly in patients with schizophrenia, would go far in evaluating the translational value of the drug discrimination paradigm for antipsychotic drugs

    Serotonin receptor mechanisms mediate the discriminative stimulus properties of the atypical antipsychotic clozapine in C57BL/6 mice

    No full text
    Rationale: The atypical antipsychotic drug (APD) clozapine (CLZ) has been shown to have a robust discriminative cue in rats, pigeons, and monkeys in two-choice drug discrimination procedures. Objectives: The present study determined whether a two-choice drug discrimination procedure with CLZ could be established in C57BL/6 mice and whether this procedure could distinguish between atypical and typical APDs. Methods: C57BL/6 male mice were trained to discriminate 2.5 mg/kg CLZ from vehicle in a two-lever drug discrimination procedure. Results: Generalization testing with CLZ produced full substitution at the 2.5- and 5.0-mg/kg doses with an ED(50) of 1.14 mg/kg. The atypical APDs olanzapine (ED(50)=0.24 mg/ kg), risperidone (ED(50)=0.072 mg/kg), and ziprasidone (ED(50)=0.33 mg/kg) fully substituted for CLZ's discriminative cue, while the typical APD haloperidol failed to substitute for CLZ. Generalization testing with selective ligands showed that the serotonin (5-HT)(2A/2B/2C) antagonist ritanserin fully substituted for CLZ (ED(50)=2.08 mg/ kg) and that the 5-HT receptor agonist quipazine significantly attenuated CLZ's discriminative cue without disrupting response rates. The muscarinic receptor antagonist scopolamine, the dopamine agonist amphetamine, and the 5-HT agonist quipazine failed to substitute for CLZ. Conclusions: These results demonstrated that antagonism of 5-HT receptors plays an important role in mediating the discriminative stimulus properties of the atypical APD CLZ in C57BL/6 mice. The atypical APDs olanzapine, risperidone, and ziprasidone fully substituted for CLZ, while the typical APD haloperidol did not. These results suggest that CLZ drug discrimination in C57BL/6 mice may be an effective preclinical behavioral assay for screening atypical from typical antipsychotic drugs
    corecore