34 research outputs found

    A Self-Organized Method for Computing the Epidemic Threshold in Computer Networks

    Full text link
    In many cases, tainted information in a computer network can spread in a way similar to an epidemics in the human world. On the other had, information processing paths are often redundant, so a single infection occurrence can be easily "reabsorbed". Randomly checking the information with a central server is equivalent to lowering the infection probability but with a certain cost (for instance processing time), so it is important to quickly evaluate the epidemic threshold for each node. We present a method for getting such information without resorting to repeated simulations. As for human epidemics, the local information about the infection level (risk perception) can be an important factor, and we show that our method can be applied to this case, too. Finally, when the process to be monitored is more complex and includes "disruptive interference", one has to use actual simulations, which however can be carried out "in parallel" for many possible infection probabilities

    Efficacy of the motile sperm organelle morphology examination (MSOME) in predicting pregnancy after intrauterine insemination

    Get PDF
    Background: Although the motile sperm organelle morphology examination (MSOME) was developed merely as a selection criterion, its application as a method for classifying sperm morphology may represent an improvement in the evaluation of semen quality. The aim of this study was to determine the prognostic value of normal sperm morphology using MSOME with regard to clinical pregnancy (CP) after intrauterine insemination (IUI).Methods: A total of 156 IUI cycles that were performed in 111 couples were prospectively analysed. Each subject received 75 IU of recombinant FSH every second day from the third day of the cycle. Beginning on the 10th day of the cycle, follicular development was monitored by vaginal ultrasound. When one or two follicles measuring at least 17 mm were observed, recombinant hCG was administered, and IUI was performed 12-14 h and 36-40 h after hCG treatment. Prior to the IUI procedure, sperm samples were analysed by MSOME at 8400x magnification using an inverted microscope that was equipped with DIC/Nomarski differential interference contrast optics. A minimum of 200 motile spermatozoa per semen sample were evaluated, and the percentage of normal spermatozoa in each sample was determined.Results: Pregnancy occurred in 34 IUI cycles (CP rate per cycle: 21.8%, per patient: 30.6%). Based on the MSOME criteria, a significantly higher percentage of normal spermatozoa was found in the group of men in which the IUI cycles resulted in pregnancy (2.6+/-3.1%) compared to the group that did not achieve pregnancy (1.2+/-1.7%; P = 0.019). Logistic regression showed that the percentage of normal cells in the MSOME was a determining factor for the likelihood of clinical pregnancy (OR: 1.28; 95% CI: 1.08 to 1.51; P = 0.003). The ROC curve revealed an area under the curve of 0.63 and an optimum cut-off point of 2% of normal sperm morphology. At this cut-off threshold, using the percentage of normal sperm morphology by MSOME to predict pregnancy was 50% sensitive with a 40% positive predictive value and 79% specificity with an 85% negative predictive value. The efficacy of using the percentage of normal sperm morphology by MSOME in predicting pregnancy was 65%.Conclusions: The present findings support the use of high-magnification microscopy both for selecting spermatozoa and as a routine method for analysing semen before performing IUI

    R&D, bedrijfsgrootte, samenwerking, overheid en markt

    No full text

    R&D, bedrijfsgrootte, samenwerking, overheid en markt

    No full text

    The decision between internal and external R&D

    No full text
    corecore