3,394 research outputs found

    Detection of subjects with ischemic heart disease by using machine learning technique based on heart rate total variability parameters

    Get PDF
    OBJECTIVE: Ischemic heart disease (IHD), in its chronic stable form, is a subtle pathology due to its silent behavior before developing in unstable angina, myocardial infarction or sudden cardiac death. The clinical assessment is based on typical symptoms and finally confirmed, invasively, by coronary angiography. Recently, heart rate variability (HRV) analysis as well as some machine learning algorithms like Artificial Neural Networks (ANNs) were used to identify cardiovascular arrhythmias and, only in few cases, to classify IHD segments in a limited number of subjects. The goal of this study was the identification of the ANN structure and the HRV parameters producing the best performance to identify IHD patients in a non-invasive way, validating the results on a large sample of subjects. Moreover, we examined the influence of a clinical non-invasive parameter, the left ventricular ejection fraction (LVEF), on the classification performance.APPROACH: To this aim, we extracted several linear and non-linear parameters from 24h RR signal, considering both normal and ectopic beats (Heart Rate Total Variability), of 251 normal and 245 IHD subjects, matched by age and gender. ANNs using several different combinations of these parameters together with age and gender were tested. For each ANN, we varied the number of hidden neurons from 2 to 7 and simulated 100 times changing randomly training and test dataset.MAIN RESULTS: The HRTV parameters showed significant greater variability in IHD than in normal subjects. The ANN applied to meanRR, LF, LF/HF, Beta exponent, SD2 together with age and gender reached a maximum accuracy of 71.8% and, by adding as input LVEF, an accuracy of 79.8%.SIGNIFICANCE: The study provides a deep insight into how a combination of some HRTV parameters and LVEF could be exploited to reliably detect the presence of subjects affected by IHD

    Effect of Mycoplasma agalactiae mastitis on milk production and composition in Valle dell Belice dairy sheep

    Get PDF
    Contagious agalactia (CA), a disease caused by Mycoplasma agalactiae and other pathogenic mycoplasmas, is a well-known multietiological syndrome affecting dairy breeds of sheep and goats in the Mediterranean basin. The aim of this work was to study the effect on milk production and composition of mastitis caused by M. agalactiae in Valle del Belice dairy sheep. All ewes were manually milked twice daily and the milk from both daily milking was analysed for milk composition and somatic cell counts. Moreover the morning milk samples were collected aseptically from each animal for bacteriological analyses. A mixed linear model was utilised to consider milk production and composition between animals infected by CA and healthy animals. After bacteriological investigation using both cultural and molecular methods, 37 ewes were found to be infected by M. agalactiae while 50 uninfected ewes were randomly selected from the same herds to compare milk production and composition between infected and healthy animals. Statistical analyses showed that the infection with M. agalactiae had a significant effect on yield and some milk components. In particular, infected ewes showed lower milk production with lower lactose content and higher somatic cell counts. The implementation of disease control programmes based on rapid laboratory diagnosis and modern control methods is desirable for Mediterranean endemic areas.Highlights Contagious agalactia is caused by M. agalactiae and affects small ruminant dairy farms in the Mediterranean basin. Contagious agalactia is endemic in many countries and has a severe health and economic impact. Effect on milk production and composition of mastitis caused by M. agalactiae

    Far Ultraviolet Spectroscopic Explorer Spectroscopy of the O VI Resonance Doublet in Sand 2 (WO)

    Get PDF
    We present Far Ultraviolet Spectroscopic Explorer spectroscopy of Sand 2, an LMC WO-type Wolf-Rayet star, revealing the O VI resonance P Cygni doublet at 1032-1038 Å. These data are combined with Hubble Space Telescope Faint Object Spectrograph ultraviolet and Mount Stromlo 2.3 m optical spectroscopy and analyzed using a spherical, non-LTE, line-blanketed code. Our study reveals exceptional stellar parameters: T* ~ 150,000 K, v∞ = 4100 km s-1, log(L/L☉) = 5.3, andimg1.gif = 1 × 10-5 M☉ yr-1, if we adopt a volume filling factor of 10%. Elemental abundances of C/He ~ 0.7 ± 0.2 and O/He ~ 0.15img2.gif by number qualitatively support previous recombination line studies. We confirm that Sand 2 is more chemically enriched in carbon than LMC WC stars and that it is expected to undergo a supernova explosion within the next 5 × 104 yr

    Identification of plastic constitutive parameters at large deformations from three dimensional displacement fields

    Get PDF
    The aim of this paper is to provide a general procedure to extract the constitutive parameters of a plasticity model starting from displacement measurements and using the Virtual Fields Method. This is a classical inverse problem which has been already investigated in the literature, however several new features are developed here. First of all the procedure applies to a general three-dimensional displacement field which leads to large plastic deformations, no assumptions are made such as plane stress or plane strain although only pressure-independent plasticity is considered. Moreover the equilibrium equation is written in terms of the deviatoric stress tensor that can be directly computed from the strain field without iterations. Thanks to this, the identification routine is much faster compared to other inverse methods such as finite element updating. The proposed method can be a valid tool to study complex phenomena which involve severe plastic deformation and where the state of stress is completely triaxial, e.g. strain localization or necking occurrence. The procedure has been validated using a three dimensional displacement field obtained from a simulated experiment. The main potentialities as well as a first sensitivity study on the influence of measurement errors are illustrated

    Probabilistic movement primitives for coordination of multiple human–robot collaborative tasks

    Get PDF
    This paper proposes an interaction learning method for collaborative and assistive robots based on movement primitives. The method allows for both action recognition and human–robot movement coordination. It uses imitation learning to construct a mixture model of human–robot interaction primitives. This probabilistic model allows the assistive trajectory of the robot to be inferred from human observations. The method is scalable in relation to the number of tasks and can learn nonlinear correlations between the trajectories that describe the human–robot interaction. We evaluated the method experimentally with a lightweight robot arm in a variety of assistive scenarios, including the coordinated handover of a bottle to a human, and the collaborative assembly of a toolbox. Potential applications of the method are personal caregiver robots, control of intelligent prosthetic devices, and robot coworkers in factories

    Schmallenberg virus pathogenesis, tropism and interaction with the innate immune system of the host

    Get PDF
    Schmallenberg virus (SBV) is an emerging orthobunyavirus of ruminants associated with outbreaks of congenital malformations in aborted and stillborn animals. Since its discovery in November 2011, SBV has spread very rapidly to many European countries. Here, we developed molecular and serological tools, and an experimental in vivo model as a platform to study SBV pathogenesis, tropism and virus-host cell interactions. Using a synthetic biology approach, we developed a reverse genetics system for the rapid rescue and genetic manipulation of SBV. We showed that SBV has a wide tropism in cell culture and “synthetic” SBV replicates in vitro as efficiently as wild type virus. We developed an experimental mouse model to study SBV infection and showed that this virus replicates abundantly in neurons where it causes cerebral malacia and vacuolation of the cerebral cortex. These virus-induced acute lesions are useful in understanding the progression from vacuolation to porencephaly and extensive tissue destruction, often observed in aborted lambs and calves in naturally occurring Schmallenberg cases. Indeed, we detected high levels of SBV antigens in the neurons of the gray matter of brain and spinal cord of naturally affected lambs and calves, suggesting that muscular hypoplasia observed in SBV-infected lambs is mostly secondary to central nervous system damage. Finally, we investigated the molecular determinants of SBV virulence. Interestingly, we found a biological SBV clone that after passage in cell culture displays increased virulence in mice. We also found that a SBV deletion mutant of the non-structural NSs protein (SBVΔNSs) is less virulent in mice than wild type SBV. Attenuation of SBV virulence depends on the inability of SBVΔNSs to block IFN synthesis in virus infected cells. In conclusion, this work provides a useful experimental framework to study the biology and pathogenesis of SBV

    The Impact of Self-Agitating Anaerobic Batch Digester Design on Biogas Production of Cattle Manure Co-Digested with Lemna minor

    Get PDF
    The continuation of utilizing fossil fuels as cooking energy sources in rural communities in the Philippines causes more citizens to be at risk of developing numerous health illnesses. This study aimed to propose a potential solution to this problem by innovating a self-agitating anaerobic batch digester, promoting biogas production of cattle manure co-digested with Lemna minor. Two anaerobic batch digester designs, one with baffles and one without, were observed within 22 days to determine the impact of the anaerobic digester design on mixing and biogas production yield. The study contained two pairs of anaerobic batch digesters, the initial and improved digester. The water displacement method was used to measure the biogas yield from the initial and improved digesters. The results of this study on the quantity of biogas produced between the initial experimental designs measured every six days and revised experimental designs measured every four days concluded that anaerobic batch digester designs with baffles produced a superior amount of biogas with 5468.88 cm³ more yield than the digester without baffles. Utilizing an Independent Sample T-test, the difference in biogas production is considered significant, (p = .174). Similar studies in the future are encouraged to explore variations in the anaerobic digester design outside of the placement of baffles, including factors such as the materials used and the period of observation due to the limitations of this study
    corecore