9,222 research outputs found

    Development of intermolecular potential models for electrolyte solutions using an electrolyte SAFT-VR Mie equation of state

    Get PDF
    We present a theoretical framework and parameterisation of intermolecular potentials for aqueous electrolyte solutions using the statistical associating fluid theory based on the Mie interaction potential (SAFT-VR Mie), coupled with the primitive, non-restricted mean-spherical approximation (MSA) for electrolytes. In common with other SAFT approaches, water is modelled as a spherical molecule with four off-centre association sites to represent the hydrogen-bonding interactions; the repulsive and dispersive interactions between the molecular cores are represented with a potential of the Mie (generalised Lennard-Jones) form. The ionic species are modelled as fully dissociated, and each ion is treated as spherical: Coulombic ion–ion interactions are included at the centre of a Mie core; the ion–water interactions are also modelled with a Mie potential without an explicit treatment of ion–dipole interaction. A Born contribution to the Helmholtz free energy of the system is included to account for the process of charging the ions in the aqueous dielectric medium. The parameterisation of the ion potential models is simplified by representing the ion–ion dispersive interaction energies with a modified version of the London theory for the unlike attractions. By combining the Shannon estimates of the size of the ionic species with the Born cavity size reported by Rashin and Honig, the parameterisation of the model is reduced to the determination of a single ion–solvent attractive interaction parameter. The resulting SAFT-VRE Mie parameter sets allow one to accurately reproduce the densities, vapour pressures, and osmotic coefficients for a broad variety of aqueous electrolyte solutions; the activity coefficients of the ions, which are not used in the parameterisation of the models, are also found to be in good agreement with the experimental data. The models are shown to be reliable beyond the molality range considered during parameter estimation. The inclusion of the Born free-energy contribution, together with appropriate estimates for the size of the ionic cavity, allows for accurate predictions of the Gibbs free energy of solvation of the ionic species considered. The solubility limits are also predicted for a number of salts; in cases where reliable reference data are available the predictions are in good agreement with experiment

    In silico, experimental, mechanistic model for extended-release felodipine disposition exhibiting complex absorption and a highly variable food interaction

    Get PDF
    The objective of this study was to develop and explore new, in silico experimental methods for deciphering complex, highly variable absorption and food interaction pharmacokinetics observed for a modified-release drug product. Toward that aim, we constructed an executable software analog of study participants to whom product was administered orally. The analog is an object- and agent-oriented, discrete event system, which consists of grid spaces and event mechanisms that map abstractly to different physiological features and processes. Analog mechanisms were made sufficiently complicated to achieve prespecified similarity criteria. An equation-based gastrointestinal transit model with nonlinear mixed effects analysis provided a standard for comparison. Subject-specific parameterizations enabled each executed analog's plasma profile to mimic features of the corresponding six individual pairs of subject plasma profiles. All achieved prespecified, quantitative similarity criteria, and outperformed the gastrointestinal transit model estimations. We observed important subject-specific interactions within the simulation and mechanistic differences between the two models. We hypothesize that mechanisms, events, and their causes occurring during simulations had counterparts within the food interaction study: they are working, evolvable, concrete theories of dynamic interactions occurring within individual subjects. The approach presented provides new, experimental strategies for unraveling the mechanistic basis of complex pharmacological interactions and observed variability

    Balancing sub- and supra-salt strain in salt-influenced rifts: Implications for extension estimates

    Get PDF
    The structural style of salt-influenced rifts may differ from those formed in predominantly brittle crust. Salt can decouple sub- and supra-salt strain, causing sub-salt faults to be geometrically decoupled from, but kinematically coupled to and responsible for, supra-salt forced folding. Salt-influenced rifts thus contain more folds than their brittle counterparts, an observation often ignored in extension estimates. Fundamental to determining whether sub- and supra-salt structures are kinematically coherent, and the relative contributions of thin- (i.e. gravity-driven) and thick-skinned (i.e. whole-plate stretching) deformation to accommodating rift-related strain, is our ability to measure extension at both structural levels. We here use published physical models of salt-influenced extension to show that line-length estimates yield more accurate values of sub- and supra-salt extension compared to fault-heave, before applying these methods to seismic data from the Halten Terrace, offshore Norway. We show that, given the abundance of ductile deformation in salt-influenced rifts, significant amounts of extension may be ignored, leading to the erroneous interpretations of thin-skinned, gravity-gliding. If a system is kinematically coherent, supra-salt structures can help predict the occurrence and kinematics of sub-salt faults that may be poorly imaged and otherwise poorly constrained

    Breaking down barriers to eye care for Indigenous people: A new scheme for delivery of eye care in Victoria

    Full text link
    This report describes the implementation of and outcomes from a new spectacle subsidy scheme and de-centralised care options for Aboriginal and Torres Strait Islander peoples in Victoria, Australia. The Victorian Aboriginal Spectacle Subsidy Scheme (VASSS) commenced in 2010, as an additional subsidy to the long-established Victorian Eyecare Service (VES). The Victorian Aboriginal Spectacle Subsidy Scheme aimed to improve access to and uptake of affordable spectacles and eye examinations by Indigenous Victorians. The scheme is overseen by a committee convened by the Victorian Government's Department of Health and Human Services and includes eye-health stakeholders from the Aboriginal community and government, not-for-profit, university and Aboriginal communities. Key features of the Victorian Aboriginal Spectacle Subsidy Scheme include reduced and certain patient co-payments of $10, expanded spectacle frame range, broadened eligibility and community participation in service design and implementation. We describe the services implemented by the Australian College of Optometry (ACO) in Victoria and their impact on access to eye-care services. In 2014, optometric services were available at 36 service sites across Victoria, including 21 Aboriginal Health Services (AHS) sites. Patient services have increased from 400 services per year in 2009, to 1,800 services provided in 2014. During the first three years of the Victorian Aboriginal Spectacle Subsidy Scheme program (2010 to 2013), 4,200 pairs of glasses (1,400 pairs per year) were provided. Further funding to 2016/17 will lift the number of glasses to be delivered to 6,600 pairs (1,650 per year). This compares to population projected needs of 2,400 pairs per year. Overcoming the barriers to using eye-care services by Indigenous people can be difficult and resource intensive; however the Victorian Aboriginal Spectacle Subsidy Scheme provides an example of positive outcomes achieved through carefully designed and targeted approaches that engender sector and stakeholder support. Sustained support for the Victorian Aboriginal Spectacle Subsidy Scheme at a level that meets population needs is an ongoing challenge

    Silver resistance in Gram-negative bacteria: a dissection of endogenous and exogenous mechanisms

    Get PDF
    Objectives: To gain a more detailed understanding of endogenous (mutational) and exogenous (horizontally acquired) resistance to silver in Gram-negative pathogens, with an emphasis on clarifying the genetic bases for resistance. Methods: A suite of microbiological and molecular genetic techniques was employed to select and characterize endogenous and exogenous silver resistance in several Gram-negative species. Results: In Escherichia coli, endogenous resistance arose after 6 days of exposure to silver, a consequence of two point mutations that were both necessary and sufficient for the phenotype. These mutations, in ompR and cusS, respectively conferred loss of the OmpC/F porins and derepression of the CusCFBA efflux transporter, both phenotypic changes previously linked to reduced intracellular accumulation of silver. Exogenous resistance involved derepression of the SilCFBA efflux transporter as a consequence of mutation in silS, but was additionally contingent on expression of the periplasmic silver-sequestration protein SilE. Silver resistance could be selected at high frequency (>10(-9)) from Enterobacteriaceae lacking OmpC/F porins or harbouring the sil operon and both endogenous and exogenous resistance were associated with modest fitness costs in vitro. Conclusions: Both endogenous and exogenous silver resistance are dependent on the derepressed expression of closely related efflux transporters and are therefore mechanistically similar phenotypes. The ease with which silver resistance can become selected in some bacterial pathogens in vitro suggests that there would be benefit in improved surveillance for silver-resistant isolates in the clinic, along with greater control over use of silver-containing products, in order to best preserve the clinical utility of silver

    Modeling of arylamide helix mimetics in the p53 peptide binding site of hDM2 suggests parallel and anti-parallel conformations are both stable.

    Get PDF
    The design of novel α-helix mimetic inhibitors of protein-protein interactions is of interest to pharmaceuticals and chemical genetics researchers as these inhibitors provide a chemical scaffold presenting side chains in the same geometry as an α-helix. This conformational arrangement allows the design of high affinity inhibitors mimicking known peptide sequences binding specific protein substrates. We show that GAFF and AutoDock potentials do not properly capture the conformational preferences of α-helix mimetics based on arylamide oligomers and identify alternate parameters matching solution NMR data and suitable for molecular dynamics simulation of arylamide compounds. Results from both docking and molecular dynamics simulations are consistent with the arylamides binding in the p53 peptide binding pocket. Simulations of arylamides in the p53 binding pocket of hDM2 are consistent with binding, exhibiting similar structural dynamics in the pocket as simulations of known hDM2 binders Nutlin-2 and a benzodiazepinedione compound. Arylamide conformations converge towards the same region of the binding pocket on the 20 ns time scale, and most, though not all dihedrals in the binding pocket are well sampled on this timescale. We show that there are two putative classes of binding modes for arylamide compounds supported equally by the modeling evidence. In the first, the arylamide compound lies parallel to the observed p53 helix. In the second class, not previously identified or proposed, the arylamide compound lies anti-parallel to the p53 helix
    • …
    corecore