23 research outputs found

    Differential Developmental Deficits in Retinal Function in the Absence of either Protein Tyrosine Sulfotransferase-1 or -2

    Get PDF
    To investigate the role(s) of protein-tyrosine sulfation in the retina and to determine the differential role(s) of tyrosylprotein sulfotransferases (TPST) 1 and 2 in vision, retinal function and structure were examined in mice lacking TPST-1 or TPST-2. Despite the normal histologic retinal appearance in both Tpst1−/− and Tpst2−/− mice, retinal function was compromised during early development. However, Tpst1−/− retinas became electrophysiologically normal by postnatal day 90 while Tpst2−/− mice did not functionally normalize with age. Ultrastructurally, the absence of TPST-1 or TPST-2 caused minor reductions in neuronal plexus. These results demonstrate the functional importance of protein-tyrosine sulfation for proper development of the retina and suggest that the different phenotypes resulting from elimination of either TPST-1 or -2 may reflect differential expression patterns or levels of the enzymes. Furthermore, single knock-out mice of either TPST-1 or -2 did not phenocopy mice with double-knockout of both TPSTs, suggesting that the functions of the TPSTs are at least partially redundant, which points to the functional importance of these enzymes in the retina

    Lipid Composition of the Human Eye: Are Red Blood Cells a Good Mirror of Retinal and Optic Nerve Fatty Acids?

    Get PDF
    International audienceBACKGROUND: The assessment of blood lipids is very frequent in clinical research as it is assumed to reflect the lipid composition of peripheral tissues. Even well accepted such relationships have never been clearly established. This is particularly true in ophthalmology where the use of blood lipids has become very common following recent data linking lipid intake to ocular health and disease. In the present study, we wanted to determine in humans whether a lipidomic approach based on red blood cells could reveal associations between circulating and tissue lipid profiles. To check if the analytical sensitivity may be of importance in such analyses, we have used a double approach for lipidomics. METHODOLOGY AND PRINCIPAL FINDINGS: Red blood cells, retinas and optic nerves were collected from 9 human donors. The lipidomic analyses on tissues consisted in gas chromatography and liquid chromatography coupled to an electrospray ionization source-mass spectrometer (LC-ESI-MS). Gas chromatography did not reveal any relevant association between circulating and ocular fatty acids except for arachidonic acid whose circulating amounts were positively associated with its levels in the retina and in the optic nerve. In contrast, several significant associations emerged from LC-ESI-MS analyses. Particularly, lipid entities in red blood cells were positively or negatively associated with representative pools of retinal docosahexaenoic acid (DHA), retinal very-long chain polyunsaturated fatty acids (VLC-PUFA) or optic nerve plasmalogens. CONCLUSIONS AND SIGNIFICANCE: LC-ESI-MS is more appropriate than gas chromatography for lipidomics on red blood cells, and further extrapolation to ocular lipids. The several individual lipid species we have identified are good candidates to represent circulating biomarkers of ocular lipids. However, further investigation is needed before considering them as indexes of disease risk and before using them in clinical studies on optic nerve neuropathies or retinal diseases displaying photoreceptors degeneration

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Active Cholesterol Efflux in the Retina and Retinal Pigment Epithelium

    Full text link
    The importance of cholesterol as a structural component of photoreceptors and the association between impaired cholesterol homeostasis and age-related macular degeneration (AMD) prompted in the last years a deep investigation of its metabolism in the retina. Here, we focus on the export of cholesterol from intracellular membranes to extracellular acceptors, an active mechanism mediated by the ATP-binding cassette transporters A1 and G1 (ABCA1 and G1) also known as "active cholesterol efflux." Expression of genes involved in this pathway was shown for most retinal cells, while functional in vitro assays focused on the retinal pigment epithelium (RPE) due to availability of cell models. Cell-specific knockout (KO) mice were generated in the past years, and their characterization unveils an important role of the ABCA1/G1 pathway in RPE, rods, and retinal inflammatory cells. The actual involvement of cholesterol efflux in the pathogenesis of AMD still needs to be demonstrated and will help in establishing the scientific rationale for targeting the ABCA1/G1 pathway in retinal diseases
    corecore