523 research outputs found

    Increasing Student Engagement and Performance in Introductory Accounting through Student-Generated Screencasts

    Full text link
    The paper reports the findings of a trial of student generated screencasts in an introductory accounting subject. This paper examines the effect of this screencast project on student engagement and performance. The effect on student engagement is examined using data from a pre and post screencast project student survey and performance effects examined by analysing the performance of students completing and not completing the project. The results of the study suggest the screencast project facilitated higher student engagement and performance. These findings have important implications for integrating technologies such as screencasting to facilitate enhanced learning outcomes in introductory accounting subjects

    Student Perspectives about Using Mobile Devices in Their Studies

    Full text link

    Comparison of limb kinematics between collected and lengthened (medium/extended) trot in two groups of dressage horses on two different surfaces

    Get PDF
    Background: Dressage horses are often asked to work in lengthened paces during training and competition, but to date there is limited information about the biomechanics of dressage-specific paces. Preliminary work has shown increased fetlock extension in extended compared with collected paces, but further investigation of the kinematic differences between collected, medium and extended trot in dressage horses is warranted. Objectives: Investigation of the effect of collected versus medium/extended trot on limb kinematics of dressage horses. Study design: Prospective kinematic evaluation. Methods: Twenty clinically sound horses in active dressage training were used: Group 1) ten young horses (≤ 6 years) were assessed at collected and medium trot; Group 2) ten mature horses (≥9 years) were assessed at collected and extended trot. All horses were evaluated on two different surfaces. High-speed motion-capture (240Hz) was used to determine kinematic variables. Forelimb and hindlimb angles were measured at midstance. Descriptive statistics and mixed-effect multilevel-regression analyses were performed. Results: Speed and stride length were reduced and stride duration increased at collected compared with medium/extended trot. Lengthened trot (medium/extended trot) was associated with increased fetlock extension in both the forelimbs and hindlimbs in both groups of horses. Changes were greater in Group 2 compared with Group 1. Shoulder and carpus angles were associated with forelimb fetlock angle. Hock angle was not significantly influenced by pace. Surface had no effect on fetlock or hock angles. Main limitations: Only 2D motion analysis was carried out. Results may have been different in horses with more extreme gait characteristics. Conclusions: Medium/extended trot increases extension of the forelimb and the hindlimb fetlock joints compared with collected trot in both young and mature dressage horses, respectively

    On Poincare and logarithmic Sobolev inequalities for a class of singular Gibbs measures

    Full text link
    This note, mostly expository, is devoted to Poincar{\'e} and log-Sobolev inequalities for a class of Boltzmann-Gibbs measures with singular interaction. Such measures allow to model one-dimensional particles with confinement and singular pair interaction. The functional inequalities come from convexity. We prove and characterize optimality in the case of quadratic confinement via a factorization of the measure. This optimality phenomenon holds for all beta Hermite ensembles including the Gaussian unitary ensemble, a famous exactly solvable model of random matrix theory. We further explore exact solvability by reviewing the relation to Dyson-Ornstein-Uhlenbeck diffusion dynamics admitting the Hermite-Lassalle orthogonal polynomials as a complete set of eigenfunctions. We also discuss the consequence of the log-Sobolev inequality in terms of concentration of measure for Lipschitz functions such as maxima and linear statistics.Comment: Minor improvements. To appear in Geometric Aspects of Functional Analysis -- Israel Seminar (GAFA) 2017-2019", Lecture Notes in Mathematics 225

    On the Decomposition of Clifford Algebras of Arbitrary Bilinear Form

    Full text link
    Clifford algebras are naturally associated with quadratic forms. These algebras are Z_2-graded by construction. However, only a Z_n-gradation induced by a choice of a basis, or even better, by a Chevalley vector space isomorphism Cl(V) \bigwedge V and an ordering, guarantees a multi-vector decomposition into scalars, vectors, tensors, and so on, mandatory in physics. We show that the Chevalley isomorphism theorem cannot be generalized to algebras if the Z_n-grading or other structures are added, e.g., a linear form. We work with pairs consisting of a Clifford algebra and a linear form or a Z_n-grading which we now call 'Clifford algebras of multi-vectors' or 'quantum Clifford algebras'. It turns out, that in this sense, all multi-vector Clifford algebras of the same quadratic but different bilinear forms are non-isomorphic. The usefulness of such algebras in quantum field theory and superconductivity was shown elsewhere. Allowing for arbitrary bilinear forms however spoils their diagonalizability which has a considerable effect on the tensor decomposition of the Clifford algebras governed by the periodicity theorems, including the Atiyah-Bott-Shapiro mod 8 periodicity. We consider real algebras Cl_{p,q} which can be decomposed in the symmetric case into a tensor product Cl_{p-1,q-1} \otimes Cl_{1,1}. The general case used in quantum field theory lacks this feature. Theories with non-symmetric bilinear forms are however needed in the analysis of multi-particle states in interacting theories. A connection to q-deformed structures through nontrivial vacuum states in quantum theories is outlined.Comment: 25 pages, 1 figure, LaTeX, {Paper presented at the 5th International Conference on Clifford Algebras and their Applications in Mathematical Physics, Ixtapa, Mexico, June 27 - July 4, 199

    The Wasteland of Random Supergravities

    Full text link
    We show that in a general \cal{N} = 1 supergravity with N \gg 1 scalar fields, an exponentially small fraction of the de Sitter critical points are metastable vacua. Taking the superpotential and Kahler potential to be random functions, we construct a random matrix model for the Hessian matrix, which is well-approximated by the sum of a Wigner matrix and two Wishart matrices. We compute the eigenvalue spectrum analytically from the free convolution of the constituent spectra and find that in typical configurations, a significant fraction of the eigenvalues are negative. Building on the Tracy-Widom law governing fluctuations of extreme eigenvalues, we determine the probability P of a large fluctuation in which all the eigenvalues become positive. Strong eigenvalue repulsion makes this extremely unlikely: we find P \propto exp(-c N^p), with c, p being constants. For generic critical points we find p \approx 1.5, while for approximately-supersymmetric critical points, p \approx 1.3. Our results have significant implications for the counting of de Sitter vacua in string theory, but the number of vacua remains vast.Comment: 39 pages, 9 figures; v2: fixed typos, added refs and clarification

    Microscopic Realization of the Kerr/CFT Correspondence

    Get PDF
    Supersymmetric M/string compactifications to five dimensions contain BPS black string solutions with magnetic graviphoton charge P and near-horizon geometries which are quotients of AdS_3 x S^2. The holographic duals are typically known 2D CFTs with central charges c_L=c_R=6P^3 for large P. These same 5D compactifications also contain non-BPS but extreme Kerr-Newman black hole solutions with SU(2)_L spin J_L and electric graviphoton charge Q obeying Q^3 \leq J_L^2. It is shown that in the maximally charged limit Q^3 -> J_L^2, the near-horizon geometry coincides precisely with the right-moving temperature T_R=0 limit of the black string with magnetic charge P=J_L^{1/3}. The known dual of the latter is identified as the c_L=c_R=6J_L CFT predicted by the Kerr/CFT correspondence. Moreover, at linear order away from maximality, one finds a T_R \neq 0 quotient of the AdS_3 factor of the black string solution and the associated thermal CFT entropy reproduces the linearly sub-maximal Kerr-Newman entropy. Beyond linear order, for general Q^3<J_L^2, one has a finite-temperature quotient of a warped deformation of the magnetic string geometry. The corresponding dual deformation of the magnetic string CFT potentially supplies, for the general case, the c_L=c_R=6J_L CFT predicted by Kerr/CFT.Comment: 18 pages, no figure

    Short-Term, Intermittent Fasting Induces Long-Lasting Gut Health and TOR-Independent Lifespan Extension

    Get PDF
    Intermittent fasting (IF) can improve function and health during aging in laboratory model organisms, but the mechanisms at work await elucidation. We subjected fruit flies (Drosophila melanogaster) to varying degrees of IF and found that just one month of a 2-day fed:5-day fasted IF regime at the beginning of adulthood was sufficient to extend lifespan. This long-lasting, beneficial effect of early IF was not due to reduced fecundity. Starvation resistance and resistance to oxidative and xenobiotic stress were increased after IF. Early-life IF also led to higher lipid content in 60-day-old flies, a potential explanation for increased longevity. Guts of flies 40 days post-IF showed a significant reduction in age-related pathologies and improved gut barrier function. Improved gut health was also associated with reduced relative bacterial abundance. Early IF thus induced profound long-term changes. Pharmacological and genetic epistasis analysis showed that IF acted independently of the TOR pathway because rapamycin and IF acted additively to extend lifespan, and global expression of a constitutively active S6K did not attenuate the IF-induced lifespan extension. We conclude that short-term IF during early life can induce long-lasting beneficial effects, with robust increase in lifespan in a TOR-independent manner, probably at least in part by preserving gut health

    High dimensional and high resolution pulse sequences for backbone resonance assignment of intrinsically disordered proteins

    Get PDF
    Four novel 5D (HACA(N)CONH, HNCOCACB, (HACA)CON(CA)CONH, (H)NCO(NCA)CONH), and one 6D ((H)NCO(N)CACONH) NMR pulse sequences are proposed. The new experiments employ non-uniform sampling that enables achieving high resolution in indirectly detected dimensions. The experiments facilitate resonance assignment of intrinsically disordered proteins. The novel pulse sequences were successfully tested using δ subunit (20 kDa) of Bacillus subtilis RNA polymerase that has an 81-amino acid disordered part containing various repetitive sequences

    Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation.

    Get PDF
    The normally soluble TAR DNA-binding protein 43 (TDP-43) is found aggregated both in reversible stress granules and in irreversible pathogenic amyloid. In TDP-43, the low-complexity domain (LCD) is believed to be involved in both types of aggregation. To uncover the structural origins of these two modes of β-sheet-rich aggregation, we have determined ten structures of segments of the LCD of human TDP-43. Six of these segments form steric zippers characteristic of the spines of pathogenic amyloid fibrils; four others form LARKS, the labile amyloid-like interactions characteristic of protein hydrogels and proteins found in membraneless organelles, including stress granules. Supporting a hypothetical pathway from reversible to irreversible amyloid aggregation, we found that familial ALS variants of TDP-43 convert LARKS to irreversible aggregates. Our structures suggest how TDP-43 adopts both reversible and irreversible β-sheet aggregates and the role of mutation in the possible transition of reversible to irreversible pathogenic aggregation
    corecore