17 research outputs found

    Between-airport heterogeneity in air toxics emissions associated with individual cancer risk thresholds and population risks

    Get PDF
    Abstract Background Airports represent a complex source type of increasing importance contributing to air toxics risks. Comprehensive atmospheric dispersion models are beyond the scope of many applications, so it would be valuable to rapidly but accurately characterize the risk-relevant exposure implications of emissions at an airport. Methods In this study, we apply a high resolution atmospheric dispersion model (AERMOD) to 32 airports across the United States, focusing on benzene, 1,3-butadiene, and benzo [a]pyrene. We estimate the emission rates required at these airports to exceed a 10-6 lifetime cancer risk for the maximally exposed individual (emission thresholds) and estimate the total population risk at these emission rates. Results The emission thresholds vary by two orders of magnitude across airports, with variability predicted by proximity of populations to the airport and mixing height (R2 = 0.74–0.75 across pollutants). At these emission thresholds, the population risk within 50 km of the airport varies by two orders of magnitude across airports, driven by substantial heterogeneity in total population exposure per unit emissions that is related to population density and uncorrelated with emission thresholds. Conclusion Our findings indicate that site characteristics can be used to accurately predict maximum individual risk and total population risk at a given level of emissions, but that optimizing on one endpoint will be non-optimal for the other.</p

    Sustainable management of urban pollution: an integrated approach

    No full text
    This paper presents a new decision-support framework and software platform for an integrated assessment of options for sustainable management of urban pollution. The framework involves three steps: (1) mapping the flow of pollutants associated with human activities in the urban environment; (2) modelling the fate and transport of pollutants; and (3) quantifying the environmental, health and socio-economic impacts of urban pollution. It comprises a suite of different models and tools to support sustainability appraisals including life cycle assessment, substance flow analysis, source and pollutants characterisation, pollutant fate and transport modelling, health impact analysis, ecological impact assessment, and multi-criteria decision analysis. The framework can be used at different levels, from simple screening studies to more detailed assessments. The paper describes the decision-support framework and outlines several case studies to demonstrate its application. The software tool is available free of charge at www.pureframework.org. Practical applications: The PUrE framework and software platform can be applied to assess and compare the sustainability of different technologies, products, human activities or policies. Example applications of the framework have so far included sustainability comparisons of technologies for thermal treatment of municipal solid waste; generation of electricity from coal and biomass; environmental and health impacts of a mixture of pollutants in Sheffield; the role of urban green space in reducing the levels of particulate matter in London and the impacts of environmental policy on legacy pollution in Avenmouth. </jats:p

    Vehicular pollution modeling using the operational street pollution model (OSPM) for Chembur, Mumbai (India)

    No full text
    Megacities in India such as Mumbai and Delhi are among the most polluted places in the world. In the present study, the widely used operational street pollution model (OSPM) is applied for assessing pollutant loads in the street canyons of Chembur, a suburban area just outside Mumbai city. Chembur is both industrialized and highly congested with vehicles. There are six major street canyons in this area, for which modeling has been carried out for NOx and particulate matter (PM). The vehicle emission factors for Indian cities have been developed by Automotive Research Association of India (ARAI) for PM, not specifically for PM10 or PM2.5. The model has been applied for 4 days of winter season and for the whole year to see the difference of effect of meteorology. The urban background concentrations have been obtained from an air quality monitoring station. Results have been compared with measured concentrations from the routine monitoring performed in Mumbai. NOx emissions originate mainly from vehicles which are ground-level sources and are emitting close to where people live. Therefore, those emissions are highly relevant. The modeled NOx concentration compared satisfactorily with observed data. However, this was not the case for PM, most likely because the emission inventory did not contain emission terms due to resuspended particulate matter

    Evaluation of the performance of ADMS in predicting the dispersion of sulfur dioxide from a complex source in Southeast Asia: implications for health impact assessments

    No full text
    This paper reports on the performance of Atmospheric Dispersion Modelling System (ADMS) 4.2 in predicting peak and mean ambient sulfur dioxide concentrations at two sites adjacent to the Map Ta Phut Industrial Estate in Eastern Thailand, the centre of the country’s petrochemical industry. The model comprised 100 individual stacks and utilised four separate meteorological datasets from different points around the site. We show that model performance varies according to the location at which the meteorological data were obtained, with considerable differences in model outputs observed for meteorological stations that are relatively close to each other. The best performances were observed when there was co-location of the meteorological data and receptor. In such cases, acceptance criteria for the majority of performance parameters were satisfied across averaging periods ranging from 1 h to 7 days. We have also compared the results from this study with those obtained from a recent literature American Meteorological Society/United States Environmental Protection Agency Regulatory Model (AERMOD) study for the same site and time period; the comparison indicates that AERMOD is likely to be similarly influenced by the choice of meteorological dataset. Using ADMS model simulations for all four meteorological datasets and a breakdown of the local population by electoral ward, we were able to estimate exposure over 1 h, 24 h and yearly averaging periods and compare these to air quality standards and guidelines published by Thailand, the World Health Organisation (WHO) and the European Union (EU). The results of this analysis showed that despite the large variations in overall model performance, the impact of choice of meteorological dataset on prediction of compliance with the standards and guidelines is relatively small: the WHO 24-h guideline of 7.5 ppb (100th percentile) was predicted to be exceeded in all of the wards for all meteorological datasets, whilst compliance with Thai and EU standards was predicted for at least 86 % of the population, with relatively little variation between the different meteorological datasets
    corecore