5 research outputs found

    Responsible sharing of biomedical data and biospecimens via the "Automatable Discovery and Access Matrix" (ADA-M).

    No full text
    Given the data-rich nature of modern biomedical research, there is a pressing need for a systematic, structured, computer-readable way to capture, communicate, and manage sharing rules that apply to biomedical resources. This is essential for responsible recording, versioning, communication, querying, and actioning of resource sharing plans. However, lack of a common "information model" for rules and conditions that govern the sharing of materials, methods, software, data, and knowledge creates a fundamental barrier. Without this, it can be virtually impossible for Research Ethics Committees (RECs), Institutional Review Boards (IRBs), Data Access Committees (DACs), biobanks, and end users to confidently track, manage, and interpret applicable legal and ethical requirements. This raises costs and burdens of data stewardship and decreases efficient and responsible access to data, biospecimens, and other resources. To address this, the GA4GH and IRDiRC organizations sponsored the creation of the Automatable Discovery and Access Matrix (ADA-M, read simply as "Adam"). ADA-M is a comprehensive information model that provides the basis for producing structured metadata "Profiles" of regulatory conditions, thereby enabling efficient application of those conditions across regulatory spheres. Widespread use of ADA-M will aid researchers in globally searching and prescreening potential data and/or biospecimen resources for compatibility with their research plans in a responsible and efficient manner, increasing likelihood of timely DAC approvals while also significantly reducing time and effort DACs, RECs, and IRBs spend evaluating resource requests and research proposals. Extensive online documentation, software support, video guides, and an Application Programming Interface (API) for ADA-M have been made available

    Sputum microbiome temporal variability and dysbiosis in chronic obstructive pulmonary disease exacerbations: an analysis of the COPDMAP study.

    Full text link
    BACKGROUND: Recent studies suggest that lung microbiome dysbiosis, the disease associated disruption of the lung microbial community, might play a key role in chronic obstructive pulmonary disease (COPD) exacerbations. However, characterising temporal variability of the microbiome from large longitudinal COPD cohorts is needed to better understand this phenomenon. METHODS: We performed a 16S ribosomal RNA survey of microbiome on 716 sputum samples collected longitudinally at baseline and exacerbations from 281 subjects with COPD at three UK clinical centres as part of the COPDMAP consortium. RESULTS: The microbiome composition was similar among centres and between stable and exacerbations except for a small significant decrease of Veillonella at exacerbations. The abundance of Moraxella was negatively associated with bacterial alpha diversity. Microbiomes were distinct between exacerbations associated with bacteria versus eosinophilic airway inflammation. Dysbiosis at exacerbations, measured as significant within subject deviation of microbial composition relative to baseline, was present in 41% of exacerbations. Dysbiosis was associated with increased exacerbation severity indicated by a greater fall in forced expiratory volume in one second, forced vital capacity and a greater increase in CAT score, particularly in exacerbations with concurrent eosinophilic inflammation. There was a significant difference of temporal variability of microbial alpha and beta diversity among centres. The variation of beta diversity significantly decreased in those subjects with frequent historical exacerbations. CONCLUSIONS: Microbial dysbiosis is a feature of some exacerbations and its presence, especially in concert with eosinophilic inflammation, is associated with more severe exacerbations indicated by a greater fall in lung function. TRIAL REGISTRATION NUMBER: Results, NCT01620645

    Protocol for the development of the Wales Multimorbidity e-Cohort (WMC): Data sources and methods to construct a population-based research platform to investigate multimorbidity

    Get PDF
    Introduction Multimorbidity is widely recognised as the presence of two or more concurrent long-term conditions, yet remains a poorly understood global issue despite increasing in prevalence. We have created the Wales Multimorbidity e-Cohort (WMC) to provide an accessible research ready data asset to further the understanding of multimorbidity. Our objectives are to create a platform to support research which would help to understand prevalence, trajectories and determinants in multimorbidity, characterise clusters that lead to highest burden on individuals and healthcare services, and evaluate and provide new multimorbidity phenotypes and algorithms to the National Health Service and research communities to support prevention, healthcare planning and the management of individuals with multimorbidity. Methods and analysis The WMC has been created and derived from multisourced demographic, administrative and electronic health record data relating to the Welsh population in the Secure Anonymised Information Linkage (SAIL) Databank. The WMC consists of 2.9 million people alive and living in Wales on the 1 January 2000 with follow-up until 31 December 2019, Welsh residency break or death. Published comorbidity indices and phenotype code lists will be used to measure and conceptualise multimorbidity. Study outcomes will include: (1) a description of multimorbidity using published data phenotype algorithms/ontologies, (2) investigation of the associations between baseline demographic factors and multimorbidity, (3) identification of temporal trajectories of clusters of conditions and multimorbidity and (4) investigation of multimorbidity clusters with poor outcomes such as mortality and high healthcare service utilisation. Ethics and dissemination The SAIL Databank independent Information Governance Review Panel has approved this study (SAIL Project: 0911). Study findings will be presented to policy groups, public meetings, national and international conferences, and published in peer-reviewed journals

    Registered access: authorizing data access.

    Get PDF
    The Global Alliance for Genomics and Health (GA4GH) proposes a data access policy model-"registered access"-to increase and improve access to data requiring an agreement to basic terms and conditions, such as the use of DNA sequence and health data in research. A registered access policy would enable a range of categories of users to gain access, starting with researchers and clinical care professionals. It would also facilitate general use and reuse of data but within the bounds of consent restrictions and other ethical obligations. In piloting registered access with the Scientific Demonstration data sharing projects of GA4GH, we provide additional ethics, policy and technical guidance to facilitate the implementation of this access model in an international setting

    Addendum: The FAIR Guiding Principles for scientific data management and stewardship.

    No full text
    Addendum to: Scientific Data https://doi.org/10.1038/sdata.2016.18, published online 15 March 2016 Since publication, the URL at which the FAIR principles ‘living document’ is hosted and maintained has changed from http://datafairport.org/fair-principles-living-document-menu to https://www.go-fair.org/fair-principles/
    corecore