943 research outputs found

    Determining Principal Component Cardinality through the Principle of Minimum Description Length

    Full text link
    PCA (Principal Component Analysis) and its variants areubiquitous techniques for matrix dimension reduction and reduced-dimensionlatent-factor extraction. One significant challenge in using PCA, is thechoice of the number of principal components. The information-theoreticMDL (Minimum Description Length) principle gives objective compression-based criteria for model selection, but it is difficult to analytically applyits modern definition - NML (Normalized Maximum Likelihood) - to theproblem of PCA. This work shows a general reduction of NML prob-lems to lower-dimension problems. Applying this reduction, it boundsthe NML of PCA, by terms of the NML of linear regression, which areknown.Comment: LOD 201

    Two remarks on generalized entropy power inequalities

    Full text link
    This note contributes to the understanding of generalized entropy power inequalities. Our main goal is to construct a counter-example regarding monotonicity and entropy comparison of weighted sums of independent identically distributed log-concave random variables. We also present a complex analogue of a recent dependent entropy power inequality of Hao and Jog, and give a very simple proof.Comment: arXiv:1811.00345 is split into 2 papers, with this being on

    Enhanced selectivity for acidic contaminants in drinking water: From suspect screening to toxicity prediction

    Get PDF
    A novel analytical workflow for suspect screening of organic acidic contaminants in drinking water is presented, featuring selective extraction by silica-based strong anion-exchange solid-phase extraction, mixed-mode liquid chromatography-high resolution accurate mass spectrometry (LC-HRMS), peak detection, feature reduction and compound identification. The novel use of an ammonium bicarbonate-based elution solvent extended strong anion-exchange solid-phase extraction applicability to LC-HRMS of strong acids. This approach performed with consistently higher recovery and repeatability (88 ± 7 % at 500 ng L-1), improved selectivity and lower matrix interference (mean = 12 %) over a generic mixed-mode weak anion exchange SPE method. In addition, a novel filter for reducing full-scan features from fulvic and humic acids was successfully introduced, reducing workload and potential for false positives. The workflow was then applied to 10 London municipal drinking water samples, revealing the presence of 22 confirmed and 37 tentatively identified substances. Several poorly investigated and potentially harmful compounds were found which included halogenated hydroxy-cyclopentene-diones and dibromomethanesulfonic acid. Some of these compounds have been reported as mutagenic in test systems and thus their presence here requires further investigation. Overall, this approach demonstrated that employing selective extraction improved detection and helped shortlist suspects and potentially toxic chemical contaminants with higher confidence

    Achievement motives and emotional processes in children during problem-solving: Two experimental studies of their relation to performance in different achievement goal conditions

    Get PDF
    In two studies, the influence of key emotional and motivational factors on performance in different achievement goal-type situations is examined. In study 1, based on 314 sixth-graders, two types of goal situations were induced; performance and mastery. The goals were examined with respect to important antecedents (e.g., motive dispositions) and several consequences (e.g., performance, satisfaction, pleasant affect, worry, and emotionality). The results showed that the motive to achieve success (Ms) produced positive affects, satisfaction, and increased performance, whereas the motive to avoid failure (Mf) produced worries and performance reduction. In study 2, based on 331 sixth-graders, three types of goal situations were induced; performance–approach, performance–avoidance, and mastery goals. The findings revealed that the most important single factors positively related to performance were Ms and mastery–goal situation. In addition, high Ms pupils performed better under mastery condition than under performance condition. Finally, avoidance-goal situation accentuate the negative effects of high Mf on performance

    A relocatable ocean model in support of environmental emergencies

    Get PDF
    During the Costa Concordia emergency case, regional, subregional, and relocatable ocean models have been used together with the oil spill model, MEDSLIK-II, to provide ocean currents forecasts, possible oil spill scenarios, and drifters trajectories simulations. The models results together with the evaluation of their performances are presented in this paper. In particular, we focused this work on the implementation of the Interactive Relocatable Nested Ocean Model (IRENOM), based on the Harvard Ocean Prediction System (HOPS), for the Costa Concordia emergency and on its validation using drifters released in the area of the accident. It is shown that thanks to the capability of improving easily and quickly its configuration, the IRENOM results are of greater accuracy than the results achieved using regional or subregional model products. The model topography, and to the initialization procedures, and the horizontal resolution are the key model settings to be configured. Furthermore, the IRENOM currents and the MEDSLIK-II simulated trajectories showed to be sensitive to the spatial resolution of the meteorological fields used, providing higher prediction skills with higher resolution wind forcing.MEDESS4MS Project; TESSA Project; MyOcean2 Projectinfo:eu-repo/semantics/publishedVersio

    Tissue Microenvironments Define and Get Reinforced by Macrophage Phenotypes in Homeostasis or during Inflammation, Repair and Fibrosis

    Get PDF
    Current macrophage phenotype classifications are based on distinct in vitro culture conditions that do not adequately mirror complex tissue environments. In vivo monocyte progenitors populate all tissues for immune surveillance which supports the maintenance of homeostasis as well as regaining homeostasis after injury. Here we propose to classify macrophage phenotypes according to prototypical tissue environments, e.g. as they occur during homeostasis as well as during the different phases of (dermal) wound healing. In tissue necrosis and/or infection, damage- and/or pathogen-associated molecular patterns induce proinflammatory macrophages by Toll-like receptors or inflammasomes. Such classically activated macrophages contribute to further tissue inflammation and damage. Apoptotic cells and antiinflammatory cytokines dominate in postinflammatory tissues which induce macrophages to produce more antiinflammatory mediators. Similarly, tumor-associated macrophages also confer immunosuppression in tumor stroma. Insufficient parenchymal healing despite abundant growth factors pushes macrophages to gain a profibrotic phenotype and promote fibrocyte recruitment which both enforce tissue scarring. Ischemic scars are largely devoid of cytokines and growth factors so that fibrolytic macrophages that predominantly secrete proteases digest the excess extracellular matrix. Together, macrophages stabilize their surrounding tissue microenvironments by adapting different phenotypes as feed-forward mechanisms to maintain tissue homeostasis or regain it following injury. Furthermore, macrophage heterogeneity in healthy or injured tissues mirrors spatial and temporal differences in microenvironments during the various stages of tissue injury and repair. Copyright (C) 2012 S. Karger AG, Base

    Theory and Validation of Magnetic Resonance Fluid Motion Estimation Using Intensity Flow Data

    Get PDF
    15 p.Background Motion tracking based on spatial-temporal radio-frequency signals from the pixel representation of magnetic resonance (MR) imaging of a non-stationary fluid is able to provide two dimensional vector field maps. This supports the underlying fundamentals of magnetic resonance fluid motion estimation and generates a new methodology for flow measurement that is based on registration of nuclear signals from moving hydrogen nuclei in fluid. However, there is a need to validate the computational aspect of the approach by using velocity flow field data that we will assume as the true reference information or ground truth. Methodology/Principal Findings In this study, we create flow vectors based on an ideal analytical vortex, and generate artificial signal-motion image data to verify our computational approach. The analytical and computed flow fields are compared to provide an error estimate of our methodology. The comparison shows that the fluid motion estimation approach using simulated MR data is accurate and robust enough for flow field mapping. To verify our methodology, we have tested the computational configuration on magnetic resonance images of cardiac blood and proved that the theory of magnetic resonance fluid motion estimation can be applicable practically. Conclusions/Significance The results of this work will allow us to progress further in the investigation of fluid motion prediction based on imaging modalities that do not require velocity encoding. This article describes a novel theory of motion estimation based on magnetic resonating blood, which may be directly applied to cardiac flow imaging.Kelvin Kian Loong Wong, Richard Malcolm Kelso, Stephen Grant Worthley, Prashanthan Sanders, Jagannath Mazumdar, Derek Abbot

    The Quadruple Squeeze: Defining the safe operating space for freshwater use to achieve a triply green revolution in the Anthropocene

    Get PDF
    Humanity has entered a new phase of sustainability challenges, the Anthropocene, in which human development has reached a scale where it affects vital planetary processes. Under the pressure from a quadruple squeeze—from population and development pressures, the anthropogenic climate crisis, the anthropogenic ecosystem crisis, and the risk of deleterious tipping points in the Earth system—the degrees of freedom for sustainable human exploitation of planet Earth are severely restrained. It is in this reality that a new green revolution in world food production needs to occur, to attain food security and human development over the coming decades. Global freshwater resources are, and will increasingly be, a fundamental limiting factor in feeding the world. Current water vulnerabilities in the regions in most need of large agricultural productivity improvements are projected to increase under the pressure from global environmental change. The sustainability challenge for world agriculture has to be set within the new global sustainability context. We present new proposed sustainability criteria for world agriculture, where world food production systems are transformed in order to allow humanity to stay within the safe operating space of planetary boundaries. In order to secure global resilience and thereby raise the chances of planet Earth to remain in the current desired state, conducive for human development on the long-term, these planetary boundaries need to be respected. This calls for a triply green revolution, which not only more than doubles food production in many regions of the world, but which also is environmentally sustainable, and invests in the untapped opportunities to use green water in rainfed agriculture as a key source of future productivity enhancement. To achieve such a global transformation of agriculture, there is a need for more innovative options for water interventions at the landscape scale, accounting for both green and blue water, as well as a new focus on cross-scale interactions, feed-backs and risks for unwanted regime shifts in the agro-ecological landscape
    corecore