11 research outputs found
Dynamics of open quantum systems
The coupling between the states of a system and the continuum into which it
is embedded, induces correlations that are especially large in the short time
scale. These correlations cannot be calculated by using a statistical or
perturbational approach. They are, however, involved in an approach describing
structure and reaction aspects in a unified manner. Such a model is the SMEC
(shell model embedded in the continuum). Some characteristic results obtained
from SMEC as well as some aspects of the correlations induced by the coupling
to the continuum are discussed.Comment: 16 pages, 5 figure
Generalized Fano lineshapes reveal exceptional points in photonic molecules
The optical behavior of coupled systems, in which the breaking of parity and time-reversal symmetry occurs, is drawing increasing attention to address the physics of the exceptional point singularity, i.e., when the real and imaginary parts of the normal-mode eigenfrequencies coincide. At this stage, fascinating phenomena are predicted, including electromagnetic-induced transparency and phase transitions. To experimentally observe the exceptional points, the near-field coupling to waveguide proposed so far was proved to work only in peculiar cases. Here, we extend the interference detection scheme, which lies at the heart of the Fano lineshape, by introducing generalized Fano lineshapes as a signature of the exceptional point occurrence in resonant-scattering experiments. We investigate photonic molecules and necklace states in disordered media by means of a near-field hyperspectral mapping. Generalized Fano profiles in material science could extend the characterization of composite nanoresonators, semiconductor nanostructures, and plasmonic and metamaterial devices
Non-adiabatic cluster expansion after ultrashort laser interaction
We used X-ray spectroscopy as a diagnostic tool for investigating the properties of laser-cluster interactions at the stage in which non-adiabatic cluster expansion takes place and a quasi-homogeneous plasma is produced. The experiment was carried out with a 10 TW, 65 fs Ti:Sa laser focused on CO(2) cluster jets. The effect of different laser-pulse contrast ratios and cluster concentrations was investigated. The X-ray emission associated to the Rydberg transitions allowed us to retrieve, through the density and temperature of the emitting plasma, the time after the beginning of the interaction at which the emission occurred. The comparison of this value with the estimated time for the "homogeneous" plasma formation shows that the degree of adiabaticity depends on both the cluster concentration and the pulse contrast. Interferometric measurements support the X-ray data concerning the plasma electron density
X-ray spectroscopic diagnostics of ultrashort laser-cluster interaction at the stage of the nonadiabatic scattering of clusters RID G-4487-2011
X-ray spectroscopic diagnostics of laser-cluster interaction at the stage of nonadiabatic scattering of clusters and formation of a spatially uniform plasma channel has been performed. The experimental investigations have been carried out on a Ti:Sa laser setup with a pulse duration of about 65 fs and an energy up to 600 mJ. It has been shown that, within 10 ps from the beginning of a laser femtosecond pulse, the laser-cluster interaction forms a uniform plasma channel with a length of 0.4 to 1 mm with the parameters N (e) 10(19) -10(20) cm(-3) and T (e) similar to 100 eV