2,509 research outputs found
Extraction of bodily features for gait recognition and gait attractiveness evaluation
This is the author's accepted manuscript. The final publication is available at Springer via
http://dx.doi.org/10.1007/s11042-012-1319-2. Copyright @ 2012 Springer.Although there has been much previous research on which bodily features are most important in gait analysis, the questions of which features should be extracted from gait, and why these features in particular should be extracted, have not been convincingly answered. The primary goal of the study reported here was to take an analytical approach to answering these questions, in the context of identifying the features that are most important for gait recognition and gait attractiveness evaluation. Using precise 3D gait motion data obtained from motion capture, we analyzed the relative motions from different body segments to a root marker (located on the lower back) of 30 males by the fixed root method, and compared them with the original motions without fixing root. Some particular features were obtained by principal component analysis (PCA). The left lower arm, lower legs and hips were identified as important features for gait recognition. For gait attractiveness evaluation, the lower legs were recognized as important features.Dorothy Hodgkin Postgraduate Award and HEFCE
Improved contact tracing using network analysis and spatial-temporal proximity
PURPOSE: Contact tracing is a crucial tool in infection prevention and control (IPC), which aims to identify outbreaks and prevent onward transmission. What constitutes a contact is typically based on strict binary criteria (i.e., being at a location at the same time). Missing data, indirect contacts and background sources can however substantially alter contact-tracing investigations. Here, we present StEP, a Spatial-temporal Epidemiological Proximity model that accounts for imperfect data by introducing a network-based notion of contact based on spatial-temporal proximity derived from background flows of patient movement. METHODS & MATERIALS: We showcase StEP by analysing outbreaks of multidrug-resistant bacteria and COVID-19 within a large hospital Trust in London (UK).StEP utilises spatial-temporal patient trajectories and the background hospital movement flows to recover enhanced contact networks. Firstly, we study a well-characterised outbreak of carbapenemase-producing Enterobacteriaceae (CPE) involving 116 hospitalised patients where genetic sequencing is used to learn model parameters. Secondly, our trained model is deployed in an unsupervised manner on three unseen outbreaks involving 867 patients of related CPE-types. Thirdly, we test application to an altogether novel pathogen by analysing a hospital outbreak of COVID-19 among 90 hospital patients, and demonstrate the power of StEP when characterising newly emerging diseases, even when there is a lack of sequencing data. RESULTS: In addition to recovering core contact structures, StEP identifies missing contacts that link seemingly unconnected infection clusters, revealing a larger extent of transmission than conventional methods. Via genomic analyses we confirm that the additional contacts detected through StEP lead to improved alignment to the plasmid phylogeny (the major outbreak driving force). Hence the StEP contact network is most aligned to the transmission structure. CONCLUSION: By considering spatial-temporal information in a continuous manner, StEP tackles several challenges associated with traditional contact-tracing. StEP allows both direct and indirect contacts as possible routes of disease transmission and is tuneable to a pathogen's epidemiological characteristics. Such flexible use of heterogeneous data in uncertain situations can significantly enhance IPC
Denitrification bioreactor trial in the Russell River catchment of the Wet Tropics: final report
Dissolved inorganic nitrogen (DIN) in runoff from agricultural land is considered to have a significant detrimental impact on the Great Barrier Reef (GBR). Losses of DIN to runoff can be reduced by good agricultural practices, but they cannot be eliminated entirely in the Wet Tropics due to the need for adequate nitrogen supply to crops, the high solubility of DIN, particularly nitrate, and high rainfall. Thus, it is inevitable that DIN concentrations are higher in runoff from agricultural land than from forested areas. Some of this DIN is removed from the water as it moves through aquifers, creeks, rivers, and wetlands on its way to the sea, through the process of microbial denitrification. Denitrification involves the conversion of nitrate and nitrite (NOx-N) to dinitrogen (N2) gas, which is lost to the atmosphere.
Denitrification requires NOx-N, organic matter, and low oxygen concentration. Wetlands provide these conditions, so DIN concentrations decline in water moving through them. Similarly, denitrifying bioreactors are designed to treat water by passing it through a porous organic material, typically woodchips. The woodchips provide organic matter for the microorganisms, which in turn lower the oxygen concentration, providing ideal conditions for denitrification.
Denitrifying bioreactors are now widely used to remove the NOx-N component of DIN from agricultural runoff water elsewhere, but they have not yet been evaluated in the Wet Tropics. The Wet Tropics pose a challenge for efficacy due to the large volumes of water moving through the landscape. The objective of this project was “to establish the effectiveness of denitrifying bioreactors as a remediation technology for excess DIN in agricultural runoff within the Babinda Swamp Drainage Area (BSDA) of the Russell catchment”. The Russell River exports a disproportionate amount of DIN to the GBR lagoon because of the high rainfall and high proportion of agriculture, mostly sugarcane, in its catchment
InternationaL cross-sectIonAl and longItudinal assessment on aSthma cONtrol in European adult patients : the LIAISON study protocol
The study is funded by Chiesi Farmaceutici S.p.A., Parma, ItalyPeer reviewedPublisher PD
Identification of Escherichia coli strains from water vending machines of Kelantan, Malaysia using 16S rRNA gene sequence analysis
Water vending machines provide an alternative source of clean and safe drinking water to the consumers. However, the quality of drinking water may alter due to contamination from lack of hygienic practices and maintenance of the machines. Hence, this study was conducted to determine the microbiological quality of water from vending machines and associated contact surfaces. Seventeen water samples and 85 swab samples (nozzles, drip trays, coin slots, buttons and doors) from 3 locations in Kelantan were collected. Polymerase chain reaction amplification and 16S ribosomal ribonucleic acid (rRNA) sequencing were carried out and sequences obtained were compared against the sequences available in the National Centre for Biotechnology Information database using the basic local alignment search tool programme. Coliform counts were observed in 94.12 % of water samples, 76.47 % of nozzles and 82.35 % of drip tray swabs. Furthermore, results of 16S rRNA sequence analysis indicated that two gram-negative isolates were identified as Escherichia coli U 5/41 (Accession no. NR_024570.1) and E. coli O157:H7 EDL933 (Accession no. CP008957.1) with similarity value of 100 %, respectively. The results from this study further improve our understanding of the potential microorganisms in drinking water. Regular maintenance and cleaning of water vending machines are important to reduce bacterial growth and the presence of waterborne pathogens
Children's traditional ecological knowledge of wild food resources: a case study in a rural village in Northeast Thailand
Consuming wild foods is part of the food ways of people in many societies, including farming populations throughout the world. Knowledge of non-domesticated food resources is part of traditional and tacit ecological knowledge, and is largely transmitted through socialization within cultural and household contexts. The context of this study, a small village in Northeast Thailand, is one where the community has experienced changes due to the migration of the parental generation, with the children being left behind in the village to be raised by their grandparents
Exciton Condensation and Perfect Coulomb Drag
Coulomb drag is a process whereby the repulsive interactions between
electrons in spatially separated conductors enable a current flowing in one of
the conductors to induce a voltage drop in the other. If the second conductor
is part of a closed circuit, a net current will flow in that circuit. The drag
current is typically much smaller than the drive current owing to the heavy
screening of the Coulomb interaction. There are, however, rare situations in
which strong electronic correlations exist between the two conductors. For
example, bilayer two-dimensional electron systems can support an exciton
condensate consisting of electrons in one layer tightly bound to holes in the
other. One thus expects "perfect" drag; a transport current of electrons driven
through one layer is accompanied by an equal one of holes in the other. (The
electrical currents are therefore opposite in sign.) Here we demonstrate just
this effect, taking care to ensure that the electron-hole pairs dominate the
transport and that tunneling of charge between the layers is negligible.Comment: 12 pages, 4 figure
- …