94 research outputs found

    CAV3 mutations causing exercise intolerance, myalgia and rhabdomyolysis: expanding the phenotypic spectrum of caveolinopathies

    Get PDF
    Rhabdomyolysis is often due to a combination of environmental trigger(s) and genetic predisposition; however, the underlying genetic cause remains elusive in many cases. Mutations in CAV3 lead to various neuromuscular phenotypes with partial overlap, including limb girdle muscular dystrophy type 1C (LGMD1C), rippling muscle disease, distal myopathy and isolated hyperCKemia. Here we present a series of eight patients from seven families presenting with exercise intolerance and rhabdomyolysis caused by mutations in CAV3 diagnosed by next generation sequencing (NGS) (n=6). Symptoms included myalgia (n=7), exercise intolerance (n=6) and episodes of rhabdomyolysis (n=2). Percussion-induced rapid muscle contractions (PIRCs) were seen in five out of six patients examined. A previously reported heterozygous mutation in CAV3 (p.T78M) and three novel variants (p.V14I, p.F41S, p.F54V) were identified. Caveolin-3 immunolabeling in muscle was normal in 3/4 patients however, immunoblotting showed more than 50% reduction of caveolin-3 in five patients compared with controls. This case series demonstrates that exercise intolerance, myalgia and rhabdomyolysis may be caused by CAV3 mutations and broadens the phenotypic spectrum of caveolinopathies. In our series immunoblotting was a more sensitive method to detect reduced caveolin-3 levels than immunohistochemistry in skeletal muscle. Patients presenting with muscle pain, exercise intolerance and rhabdomyolysis should be routinely tested for PIRCs as this may be an important clinical clue for caveolinopathies, even in the absence of other “typical” features. The use of NGS may expand current knowledge concerning inherited diseases, and unexpected/atypical phenotypes may be attributed to well-known human disease genes

    Membrane Protein Location-Dependent Regulation by PI3K (III) and Rabenosyn-5 in Drosophila Wing Cells

    Get PDF
    The class III phosphatidylinositol-3 kinase (PI3K (III)) regulates intracellular vesicular transport at multiple steps through the production of phosphatidylinositol-3-phosphate (PI(3)P). While the localization of proteins at distinct membrane domains are likely regulated in different ways, the roles of PI3K (III) and its effectors have not been extensively investigated in a polarized cell during tissue development. In this study, we examined in vivo functions of PI3K (III) and its effector candidate Rabenosyn-5 (Rbsn-5) in Drosophila wing primordial cells, which are polarized along the apical-basal axis. Knockdown of the PI3K (III) subunit Vps15 resulted in an accumulation of the apical junctional proteins DE-cadherin and Flamingo and also the basal membrane protein β-integrin in intracellular vesicles. By contrast, knockdown of PI3K (III) increased lateral membrane-localized Fasciclin III (Fas III). Importantly, loss-of-function mutation of Rbsn-5 recapitulated the aberrant localization phenotypes of β-integrin and Fas III, but not those of DE-cadherin and Flamingo. These results suggest that PI3K (III) differentially regulates localization of proteins at distinct membrane domains and that Rbsn-5 mediates only a part of the PI3K (III)-dependent processes

    Sensitivity of Anopheles gambiae population dynamics to meteo-hydrological variability: a mechanistic approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mechanistic models play an important role in many biological disciplines, and they can effectively contribute to evaluate the spatial-temporal evolution of mosquito populations, in the light of the increasing knowledge of the crucial driving role on vector dynamics played by meteo-climatic features as well as other physical-biological characteristics of the landscape.</p> <p>Methods</p> <p>In malaria eco-epidemiology landscape components (atmosphere, water bodies, land use) interact with the epidemiological system (interacting populations of vector, human, and parasite). In the background of the eco-epidemiological approach, a mosquito population model is here proposed to evaluate the sensitivity of <it>An. gambiae </it>s.s. population to some peculiar thermal-pluviometric scenarios. The scenarios are obtained perturbing meteorological time series data referred to four Kenyan sites (Nairobi, Nyabondo, Kibwesi, and Malindi) representing four different eco-epidemiological settings.</p> <p>Results</p> <p>Simulations highlight a strong dependence of mosquito population abundance on temperature variation with well-defined site-specific patterns. The upper extreme of thermal perturbation interval (+ 3°C) gives rise to an increase in adult population abundance at Nairobi (+111%) and Nyabondo (+61%), and a decrease at Kibwezi (-2%) and Malindi (-36%). At the lower extreme perturbation (-3°C) is observed a reduction in both immature and adult mosquito population in three sites (Nairobi -74%, Nyabondo -66%, Kibwezi -39%), and an increase in Malindi (+11%). A coherent non-linear pattern of population variation emerges. The maximum rate of variation is +30% population abundance for +1°C of temperature change, but also almost null and negative values are obtained. Mosquitoes are less sensitive to rainfall and both adults and immature populations display a positive quasi-linear response pattern to rainfall variation.</p> <p>Conclusions</p> <p>The non-linear temperature-dependent response is in agreement with the non-linear patterns of temperature-response of the basic bio-demographic processes. This non-linearity makes the hypothesized biological amplification of temperature effects valid only for a limited range of temperatures. As a consequence, no simple extrapolations can be done linking temperature rise with increase in mosquito distribution and abundance, and projections of <it>An. gambiae </it>s.s. populations should be produced only in the light of the local meteo-climatic features as well as other physical and biological characteristics of the landscape.</p

    The Functions of Myosin II and Myosin V Homologs in Tip Growth and Septation in Aspergillus nidulans

    Get PDF
    Because of the industrial and medical importance of members of the fungal genus Aspergillus, there is considerable interest in the functions of cytoskeletal components in growth and secretion in these organisms. We have analyzed the genome of Aspergillus nidulans and found that there are two previously unstudied myosin genes, a myosin II homolog, myoB (product = MyoB) and a myosin V homolog, myoE (product = MyoE). Deletions of either cause significant growth defects. MyoB localizes in strings that coalesce into contractile rings at forming septa. It is critical for septation and normal deposition of chitin but not for hyphal extension. MyoE localizes to the Spitzenkörper and to moving puncta in the cytoplasm. Time-lapse imaging of SynA, a v-SNARE, reveals that in myoE deletion strains vesicles no longer localize to the Spitzenkörper. Tip morphology is slightly abnormal and branching occurs more frequently than in controls. Tip extension is slower than in controls, but because hyphal diameter is greater, growth (increase in volume/time) is only slightly reduced. Concentration of vesicles into the Spitzenkörper before incorporation into the plasma membrane is, thus, not required for hyphal growth but facilitates faster tip extension and a more normal hyphal shape

    Overall survival in the OlympiA phase III trial of adjuvant olaparib in patients with germline pathogenic variants in BRCA1/2 and high risk, early breast cancer.

    Get PDF
    BACKGROUND: The randomized, double-blind OlympiA trial compared one year of the oral poly(adenosine diphosphate-ribose) polymerase) inhibitor, olaparib, to matching placebo as adjuvant therapy for patients with pathogenic or likely pathogenic variants in germline BRCA1 or BRCA2 (gBRCA1/2pv) and high-risk, human epidermal growth factor receptor 2 (HER2)-negative, early breast cancer (EBC). The first pre-specified interim analysis (IA) previously demonstrated statistically significant improvement in invasive-disease-free survival (IDFS) and distant-disease-free survival (DDFS). The olaparib-group had fewer deaths than the placebo-group, but the difference did not reach statistical significance for overall survival (OS). We now report the pre-specified second IA of OS with updates of IDFS, DDFS, and safety. PATIENTS AND METHODS: 1,836 patients were randomly assigned to olaparib or placebo following (neo)adjuvant chemotherapy (N)ACT, surgery, and radiation therapy if indicated. Endocrine therapy was given concurrently with study medication for hormone-receptor-positive-cancers. Statistical significance for OS at this IA required P<0.015. RESULTS: With median follow-up of 3.5 years, the second IA of OS demonstrated significant improvement in the olaparib-group relative to the placebo-group (HR, 0.68; 98.5% CI 0.47 to 0.97; P=0.009). Four-year OS was 89.8% in the olaparib-group and 86.4% in the placebo-group (Δ 3.4%, 95% CI -0.1% to 6.8%). Four-year IDFS for olaparib-group versus placebo-group was 82.7% versus 75.4% (Δ 7.3%, 95% CI 3.0% to 11.5%) and 4-year DDFS was 86.5% versus 79.1% (Δ 7.4%, 95% CI 3.6% to 11.3%), respectively. Subset analyses for OS, IDFS, and DDFS demonstrated benefit across major subgroups. No new safety signals were identified including no new cases of acute myelogenous leukemia or myelodysplastic syndrome (AML/MDS). CONCLUSION: With 3.5 years of median follow-up, OlympiA demonstrates statistically significant improvement in OS with adjuvant olaparib compared with placebo for gBRCA1/2pv-associated EBC and maintained improvements in the previously reported, statistically significant endpoints of IDFS and DDFS with no new safety signals

    Barriers to Non-Viral Vector-Mediated Gene Delivery in the Nervous System

    Get PDF
    Efficient methods for cell line transfection are well described, but, for primary neurons, a high-yield method different from those relying on viral vectors is lacking. Viral transfection has several drawbacks, such as the complexity of vector preparation, safety concerns, and the generation of immune and inflammatory responses when used in vivo. However, one of the main problems for the use of non-viral gene vectors for neuronal transfection is their low efficiency when compared with viral vectors. Transgene expression, or siRNA delivery mediated by non-viral vectors, is the result of multiple processes related to cellular membrane crossing, intracellular traffic, and/or nuclear delivery of the genetic material cargo. This review will deal with the barriers that different nanoparticles (cationic lipids, polyethyleneimine, dendrimers and carbon nanotubes) must overcome to efficiently deliver their cargo to central nervous system cells, including internalization into the neurons, interaction with intracellular organelles such as lysosomes, and transport across the nuclear membrane of the neuron in the case of DNA transfection. Furthermore, when used in vivo, the nanoparticles should efficiently cross the blood-brain barrier to reach the target cells in the brain
    corecore