51 research outputs found
Use of selected complementary and alternative medicine (CAM) treatments in veterans with cancer or chronic pain: a cross-sectional survey
BACKGROUND: Complementary and alternative medicine (CAM) is emerging as an important form of care in the United States. We sought to measure the prevalence of selected CAM use among veterans attending oncology and chronic pain clinics and to describe the characteristics of CAM use in this population. METHODS: The self-administered, mail-in survey included questions on demographics, health beliefs, medical problems and 6 common CAM treatments (herbs, dietary supplements, chiropractic care, massage therapy, acupuncture and homeopathy) use. We used the chi-square test to examine bivariate associations between our predictor variables and CAM use. RESULTS: Seventy-two patients (27.3%) reported CAM use within the past 12 months. CAM use was associated with more education (p = 0.02), higher income (p = 0.006), non-VA insurance (p = 0.003), additional care outside the VA (p = 0.01) and the belief that lifestyle contributes to illness (p = 0.015). The diagnosis of chronic pain versus cancer was not associated with differential CAM use (p = 0.15). Seventy-six percent of CAM non-users reported that they would use it if offered at the VA. CONCLUSION: Use of 6 common CAM treatments among these veterans is lower than among the general population, but still substantial. A large majority of veterans reported interest in using CAM modalities if they were offered at the VA. A national assessment of veteran interest in CAM may assist VA leaders to respond to patients' needs
Room temperature mid-IR single photon spectral imaging
Spectral imaging and detection of mid-infrared (mid-IR) wavelengths are
emerging as an enabling technology of great technical and scientific interest;
primarily because important chemical compounds display unique and strong mid-IR
spectral fingerprints revealing valuable chemical information. While modern
Quantum cascade lasers have evolved as ideal coherent mid-IR excitation
sources, simple, low noise, room temperature detectors and imaging systems
still lag behind. We address this need presenting a novel, field-deployable,
upconversion system for sensitive, 2-D, mid-IR spectral imaging. Measured room
temperature dark noise is 0.2 photons/spatial element/second, which is a
billion times below the dark noise level of cryogenically cooled InSb cameras.
Single photon imaging and up to 200 x 100 spatial elements resolution is
obtained reaching record high continuous wave quantum efficiency of about 20 %
for polarized incoherent light at 3 \mum. The proposed method is relevant for
existing and new mid-IR applications like gas analysis and medical diagnostics
Neonatal immune responses to TLR2 stimulation: Influence of maternal atopy on Foxp3 and IL-10 expression
BACKGROUND: Maternal atopic background and stimulation of the adaptive immune system with allergen interact in the development of allergic disease. Stimulation of the innate immune system through microbial exposure, such as activation of the innate Toll-like-receptor 2 (TLR2), may reduce the development of allergy in childhood. However, little is known about the immunological effects of microbial stimulation on early immune responses and in association with maternal atopy. METHODS: We analyzed immune responses of cord blood mononuclear cells (CBMC) from 50 healthy neonates (31 non-atopic and 19 atopic mothers). Cells were stimulated with the TLR2 agonist peptidoglycan (Ppg) or the allergen house dust mite Dermatophagoides farinae (Derf1), and results compared to unstimulated cells. We analyzed lymphocyte proliferation and cytokine secretion of CBMC. In addition, we assessed gene expression associated with T regulatory cells including the transcription factor Foxp3, the glucocorticoid-induced TNF receptor (GITR), and the cytotoxic lymphocyte antigen 4 (CTLA4). Lymphocyte proliferation was measured by (3)H-Thymidine uptake, cytokine concentrations determined by ELISA, mRNA expression of T cell markers by real-time RT-PCR. RESULTS: Ppg stimulation induced primarily IL-10 cytokine production, in addition to IFN-γ, IL-13 and TNF-α secretion. GITR was increased following Ppg stimulation (p = 0.07). Ppg-induced IL-10 production and induction of Foxp3 were higher in CBMC without, than with maternal atopy (p = 0.04, p = 0.049). IL-10 production was highly correlated with increased expression of Foxp3 (r = 0.53, p = 0.001), GITR (r = 0.47, p = 0.004) and CTLA4 (r = 0.49, p = 0.003), independent of maternal atopy. CONCLUSION: TLR2 stimulation with Ppg induces IL-10 and genes associated with T regulatory cells, influenced by maternal atopy. Increased IL-10 and Foxp3 induction in CBMC of non-atopic compared to atopic mothers, may indicate an increased capacity to respond to microbial stimuli
Maternal High Fat Diet Is Associated with Decreased Plasma n–3 Fatty Acids and Fetal Hepatic Apoptosis in Nonhuman Primates
To begin to understand the contributions of maternal obesity and over-nutrition to human development and the early origins of obesity, we utilized a non-human primate model to investigate the effects of maternal high-fat feeding and obesity on breast milk, maternal and fetal plasma fatty acid composition and fetal hepatic development. While the high-fat diet (HFD) contained equivalent levels of n-3 fatty acids (FA's) and higher levels of n-6 FA's than the control diet (CTR), we found significant decreases in docosahexaenoic acid (DHA) and total n-3 FA's in HFD maternal and fetal plasma. Furthermore, the HFD fetal plasma n-6∶n-3 ratio was elevated and was significantly correlated to the maternal plasma n-6∶n-3 ratio and maternal hyperinsulinemia. Hepatic apoptosis was also increased in the HFD fetal liver. Switching HFD females to a CTR diet during a subsequent pregnancy normalized fetal DHA, n-3 FA's and fetal hepatic apoptosis to CTR levels. Breast milk from HFD dams contained lower levels of eicosopentanoic acid (EPA) and DHA and lower levels of total protein than CTR breast milk. This study links chronic maternal consumption of a HFD with fetal hepatic apoptosis and suggests that a potentially pathological maternal fatty acid milieu is replicated in the developing fetal circulation in the nonhuman primate
Laser spectroscopy for breath analysis : towards clinical implementation
Detection and analysis of volatile compounds in exhaled breath represents an attractive tool for monitoring the metabolic status of a patient and disease diagnosis, since it is non-invasive and fast. Numerous studies have already demonstrated the benefit of breath analysis in clinical settings/applications and encouraged multidisciplinary research to reveal new insights regarding the origins, pathways, and pathophysiological roles of breath components. Many breath analysis methods are currently available to help explore these directions, ranging from mass spectrometry to laser-based spectroscopy and sensor arrays. This review presents an update of the current status of optical methods, using near and mid-infrared sources, for clinical breath gas analysis over the last decade and describes recent technological developments and their applications. The review includes: tunable diode laser absorption spectroscopy, cavity ring-down spectroscopy, integrated cavity output spectroscopy, cavity-enhanced absorption spectroscopy, photoacoustic spectroscopy, quartz-enhanced photoacoustic spectroscopy, and optical frequency comb spectroscopy. A SWOT analysis (strengths, weaknesses, opportunities, and threats) is presented that describes the laser-based techniques within the clinical framework of breath research and their appealing features for clinical use.Peer reviewe
Metabolic Disease Programming: From Mitochondria to Epigenetics, Glucocorticoid Signalling and Beyond
Embryonic and foetal development are critical periods of development in which several environmental cues determine health and disease in adulthood. Maternal conditions and an unfavourable intrauterine environment impact foetal development and may programme the offspring for increased predisposition to metabolic diseases and other chronic pathologic conditions throughout adult life. Previously, non-communicable chronic diseases were only associated with genetics and lifestyle. Now the origins of non-communicable chronic diseases are associated with early-life adaptations that produce long-term dysfunction. Early-life environment sets the long-term health and disease risk and can span through multiple generations. Recent research in developmental programming aims at identifying the molecular mechanisms responsible for developmental programming outcomes that impact cellular physiology and trigger adulthood disease. The identification of new therapeutic targets can improve offspring's health management and prevent or overcome adverse consequences of foetal programming. This review summarizes recent biomedical discoveries in the Developmental Origins of Health and Disease (DOHaD) hypothesis and highlight possible developmental programming mechanisms, including prenatal structural defects, metabolic (mitochondrial dysfunction, oxidative stress, protein modification), epigenetic and glucocorticoid signalling-related mechanisms suggesting molecular clues for the causes and consequences of programming of increased susceptibility of offspring to metabolic disease after birth. Identifying mechanisms involved in DOHaD can contribute to early interventions in pregnancy or early childhood, to re-set the metabolic homeostasis and break the chain of subsequent events that could lead to the development of disease
- …