20 research outputs found

    The impact of regular physical activity on fatigue, depression and quality of life in persons with multiple sclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to compare fatigue, depression and quality of life scores in persons with multiple sclerosis who do (Exercisers) and do not (Non-exercisers) regularly participate in physical activity.</p> <p>Methods</p> <p>A cross-sectional questionnaire study of 121 patients with MS (age 25–65 yr) living in Queensland, Australia was conducted. Physical activity level, depression, fatigue and quality of life were assessed using the International Physical Activity Questionnaire, Health Status Questionnaire Short Form 36, Becks Depression Inventory and Modified Fatigue Impact Scale.</p> <p>Results</p> <p>52 participants performed at least two 30-min exercise sessions·wk<sup>-1 </sup>(Exercisers) and 69 did not participate in regular physical activity (Non-exercisers). Exercisers reported favourable fatigue, depression and quality of life scores when compared to Non-exercisers. Significant weak correlations were found between both leisure-time and overall reported physical activity levels and some subscales of the quality of life and fatigue questionnaires. Additionally, some quality of life subscale scores indicated that regular physical activity had a greater benefit in subjects with moderate MS.</p> <p>Conclusion</p> <p>Favourable fatigue, depression and quality of life scores were reported by persons with MS who regularly participated in physical activity, when compared to persons with MS who were classified as Non-exercisers.</p

    Wide-area low-energy surface stimulation of large mammalian ventricular tissue

    No full text
    The epicardial and endocardial surfaces of the heart are attractive targets to administer antiarrhythmic electrotherapies. Electrically stimulating wide areas of the surfaces of small mammalian ventricles is straightforward given the relatively small scale of their myocardial dimensions compared to the tissue space constant and electrical field. However, it has yet to be proven for larger mammalian hearts with tissue properties and ventricular dimensions closer to humans. Our goal was to address the feasibility and impact of wide-area electrical stimulation on the ventricular surfaces of large mammalian hearts at different stimulus strengths. This was accomplished by placing long line electrodes on the ventricular surfaces of pig hearts that span wide areas, and activating them individually. Stimulus efficacy was assessed and compared between surfaces, and tissue viability was evaluated. Activation time was dependent on stimulation strength and location, achieving uniform linear stimulation at 9x threshold strength. Endocardial stimulation activated more tissue transmurally than epicardial stimulation, which could be considered a potential target for future cardiac electrotherapies. Overall, our results indicate that electrically stimulating wide areas of the ventricular surfaces of large mammals is achievable with line electrodes, minimal tissue damage, and energies under the human pain threshold (100 mJ)

    Imaging of Ventricular Fibrillation and Defibrillation: The Virtual Electrode Hypothesis

    No full text
    Ventricular fibrillation is the major underlying cause of sudden cardiac death. Understanding the complex activation patterns that give rise to ventricular fibrillation requires high resolution mapping of localized activation. The use of multi-electrode mapping unraveled re-entrant activation patterns that underlie ventricular fibrillation. However, optical mapping contributed critically to understanding the mechanism of defibrillation, where multi-electrode recordings could not measure activation patterns during and immediately after a shock. In addition, optical mapping visualizes the virtual electrodes that are generated during stimulation and defibrillation pulses, which contributed to the formulation of the virtual electrode hypothesis. The generation of virtual electrode induced phase singularities during defibrillation is arrhythmogenic and may lead to the induction of fibrillation subsequent to defibrillation. Defibrillating with low energy may circumvent this problem. Therefore, the current challenge is to use the knowledge provided by optical mapping to develop a low energy approach of defibrillation, which may lead to more successful defibrillation
    corecore