1,068 research outputs found

    Cavernostomy x Resection for Pulmonary Aspergilloma: A 32-Year History

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The most adequate surgical technique for the treatment of pulmonary aspergilloma is still controversial. This study compared two groups of patients submitted to cavernostomy and pulmonary parenchyma resection.</p> <p>Methods</p> <p>Cases of pulmonary aspergilloma operated upon between 1979 and 2010 were analyzed retrospectively. Group 1 consisted of patients submitted to cavernostomy and group 2 of patients submitted to pulmonary parenchyma resection. The following variables were compared between groups: gender, age, number of hospitalizations, pre- and postoperative length of hospital stay, time of follow-up, location and type of aspergilloma, preoperative symptoms, underlying disease, type of fungus, preoperative pulmonary function, postoperative complications, patient progression, and associated diseases.</p> <p>Results</p> <p>A total of 208 patients with pulmonary aspergilloma were studied (111 in group 1 and 97 in group 2). Group 1 was older than group 2. The number of hospitalizations, length of hospital stay and time of follow-up were higher in group 1. Hemoptysis was the most frequent preoperative symptom in group 1. Preoperative respiratory malfunction was more severe in group 1. Hemorrhagic complications and recurrence were more frequent in group 1 and infectious complications and residual pleural space were more common in group 2. Postoperative dyspnea was more frequent in group 2. Patient progression was similar in the two groups. No difference in the other factors was observed between groups.</p> <p>Conclusions</p> <p>Older patients with severe preoperative respiratory malfunction and peripheral pulmonary aspergilloma should be submitted to cavernostomy. The remaining patients can be treated by pulmonary resection.</p

    Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science

    Get PDF
    Abstract Background Many interventions found to be effective in health services research studies fail to translate into meaningful patient care outcomes across multiple contexts. Health services researchers recognize the need to evaluate not only summative outcomes but also formative outcomes to assess the extent to which implementation is effective in a specific setting, prolongs sustainability, and promotes dissemination into other settings. Many implementation theories have been published to help promote effective implementation. However, they overlap considerably in the constructs included in individual theories, and a comparison of theories reveals that each is missing important constructs included in other theories. In addition, terminology and definitions are not consistent across theories. We describe the Consolidated Framework For Implementation Research (CFIR) that offers an overarching typology to promote implementation theory development and verification about what works where and why across multiple contexts. Methods We used a snowball sampling approach to identify published theories that were evaluated to identify constructs based on strength of conceptual or empirical support for influence on implementation, consistency in definitions, alignment with our own findings, and potential for measurement. We combined constructs across published theories that had different labels but were redundant or overlapping in definition, and we parsed apart constructs that conflated underlying concepts. Results The CFIR is composed of five major domains: intervention characteristics, outer setting, inner setting, characteristics of the individuals involved, and the process of implementation. Eight constructs were identified related to the intervention (e.g., evidence strength and quality), four constructs were identified related to outer setting (e.g., patient needs and resources), 12 constructs were identified related to inner setting (e.g., culture, leadership engagement), five constructs were identified related to individual characteristics, and eight constructs were identified related to process (e.g., plan, evaluate, and reflect). We present explicit definitions for each construct. Conclusion The CFIR provides a pragmatic structure for approaching complex, interacting, multi-level, and transient states of constructs in the real world by embracing, consolidating, and unifying key constructs from published implementation theories. It can be used to guide formative evaluations and build the implementation knowledge base across multiple studies and settings.http://deepblue.lib.umich.edu/bitstream/2027.42/78272/1/1748-5908-4-50.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78272/2/1748-5908-4-50-S1.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78272/3/1748-5908-4-50-S3.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78272/4/1748-5908-4-50-S4.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78272/5/1748-5908-4-50.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78272/6/1748-5908-4-50-S2.PDFPeer Reviewe

    A Functional Nuclear Localization Sequence in the C. elegans TRPV Channel OCR-2

    Get PDF
    The ability to modulate gene expression in response to sensory experience is critical to the normal development and function of the nervous system. Calcium is a key activator of the signal transduction cascades that mediate the process of translating a cellular stimulus into transcriptional changes. With the recent discovery that the mammalian Cav1.2 calcium channel can be cleaved, enter the nucleus and act as a transcription factor to control neuronal gene expression, a more direct role for the calcium channels themselves in regulating transcription has begun to be appreciated. Here we report the identification of a nuclear localization sequence (NLS) in the C. elegans transient receptor potential vanilloid (TRPV) cation channel OCR-2. TRPV channels have previously been implicated in transcriptional regulation of neuronal genes in the nematode, although the precise mechanism remains unclear. We show that the NLS in OCR-2 is functional, being able to direct nuclear accumulation of a synthetic cargo protein as well as the carboxy-terminal cytosolic tail of OCR-2 where it is endogenously found. Furthermore, we discovered that a carboxy-terminal portion of the full-length channel can localize to the nucleus of neuronal cells. These results suggest that the OCR-2 TRPV cation channel may have a direct nuclear function in neuronal cells that was not previously appreciated

    The Exhibition as an Experiment: An Analogy and its Implications

    Full text link
    The analogy of the exhibition as an experiment suggests innovative curatorial approaches that challenge institutional practices. This analogy has however a historical precedence in modernism when itbecame paradigmatic of the exhibitions at the Museum of ModernArt in New York in the 1940s, defining the curatorial approach of its founding director Alfred J Barr. This article considers this early useof the analogy of the exhibition as an experiment and further reflects on its redefinition at the turn of the 20th century by examining how both the notions of the exhibition and of the experiment havechanged over time. In particular, the article examines the different meanings and practices inferred by the concepts of the exhibition and the experiment in the first decades of the 20th century and in the present. It outlines how correspondences between cultural and scientific paradigms can be deployed to tease unacknowledged synergies between two modes of knowledge production (i.e. the art exhibition and the experiment) and address questions of presentness, authority and legitimacy that they imply

    Piezo1 channels sense whole body physical activity to reset cardiovascular homeostasis and enhance performance

    Get PDF
    Mammalian biology adapts to physical activity but the molecular mechanisms sensing the activity remain enigmatic. Recent studies have revealed how Piezo1 protein senses mechanical force to enable vascular development. Here, we address Piezo1 in adult endothelium, the major control site in physical activity. Mice without endothelial Piezo1 lack obvious phenotype but close inspection reveals a specific effect on endothelium-dependent relaxation in mesenteric resistance artery. Strikingly, the Piezo1 is required for elevated blood pressure during whole body physical activity but not blood pressure during inactivity. Piezo1 is responsible for flow-sensitive non-inactivating non-selective cationic channels which depolarize the membrane potential. As fluid flow increases, depolarization increases to activate voltage-gated Ca2+ channels in the adjacent vascular smooth muscle cells, causing vasoconstriction. Physical performance is compromised in mice which lack endothelial Piezo1 and there is weight loss after sustained activity. The data suggest that Piezo1 channels sense physical activity to advantageously reset vascular control

    Bats Avoid Radar Installations: Could Electromagnetic Fields Deter Bats from Colliding with Wind Turbines?

    Get PDF
    Large numbers of bats are killed by collisions with wind turbines, and there is at present no direct method of reducing or preventing this mortality. We therefore determine whether the electromagnetic radiation associated with radar installations can elicit an aversive behavioural response in foraging bats. Four civil air traffic control (ATC) radar stations, three military ATC radars and three weather radars were selected, each surrounded by heterogeneous habitat. Three sampling points matched for habitat type and structure, dominant vegetation species, altitude and surrounding land class were located at increasing distances from each station. A portable electromagnetic field meter measured the field strength of the radar at three distances from the source: in close proximity (<200 m) with a high electromagnetic field (EMF) strength >2 volts/metre, an intermediate point within line of sight of the radar (200–400 m) and with an EMF strength <2 v/m, and a control site out of sight of the radar (>400 m) and registering an EMF of zero v/m. At each radar station bat activity was recorded three times with three independent sampling points monitored on each occasion, resulting in a total of 90 samples, 30 of which were obtained within each field strength category. At these sampling points, bat activity was recorded using an automatic bat recording station, operated from sunset to sunrise. Bat activity was significantly reduced in habitats exposed to an EMF strength of greater than 2 v/m when compared to matched sites registering EMF levels of zero. The reduction in bat activity was not significantly different at lower levels of EMF strength within 400 m of the radar. We predict that the reduction in bat activity within habitats exposed to electromagnetic radiation may be a result of thermal induction and an increased risk of hyperthermia

    Three dimensional electron microscopy reveals changing axonal and myelin morphology along normal and partially injured optic nerves

    Get PDF
    Following injury to the central nervous system, axons and myelin distinct from the initial injury site undergo changes associated with compromised function. Quantifying such changes is important to understanding the pathophysiology of neurotrauma; however, most studies to date used 2 dimensional (D) electron microscopy to analyse single sections, thereby failing to capture changes along individual axons. We used serial block face scanning electron microscopy (SBF SEM) to undertake 3D reconstruction of axons and myelin, analysing optic nerves from normal uninjured female rats and following partial optic nerve transection. Measures of axon and myelin dimensions were generated by examining 2D images at 5 µm intervals along the 100 µm segments. In both normal and injured animals, changes in axonal diameter, myelin thickness, fiber diameter, G-ratio and percentage myelin decompaction were apparent along the lengths of axons to varying degrees. The range of values for axon diameter along individual reconstructed axons in 3D was similar to the range from 2D datasets, encompassing reported variation in axonal diameter attributed to retinal ganglion cell diversity. 3D electron microscopy analyses have provided the means to demonstrate substantial variability in ultrastructure along the length of individual axons and to improve understanding of the pathophysiology of neurotrauma
    corecore