295 research outputs found

    Characterization of Saturn's bow shock: magnetic field observations of quasi-perpendicular shocks

    Get PDF
    Collisionless shocks vary drastically from terrestrial to astrophysical regimes resulting in radically different characteristics. This poses two complexities. First, separating the influences of these parameters on physical mechanisms such as energy dissipation. Second, correlating observations of shock waves over a wide range of each parameter, enough to span across different regimes. Investigating the latter has been restricted since the majority of studies on shocks at exotic regimes (such as supernova remnants) have been achieved either remotely or via simulations, but rarely by means of in situ observations. Here we present the parameter space of MA bow shock crossings from 2004 to 2014 as observed by the Cassini spacecraft. We find that Saturn's bow shock exhibits characteristics akin to both terrestrial and astrophysical regimes (MA of order 100), which is principally controlled by the upstream magnetic field strength. Moreover, we determined the θBn of each crossing to show that Saturn's (dayside) bow shock is predominantly quasi-perpendicular by virtue of the Parker spiral at 10 AU. Our results suggest a strong dependence on MA in controlling the onset of physical mechanisms in collisionless shocks, particularly nontime stationarity and variability. We anticipate that our comprehensive assessment will yield deeper insight into high MA collisionless shocks and provide a broader scope for understanding the structures and mechanisms of collisionless shocks

    Whistler mode waves upstream of Saturn

    No full text
    Whistler mode waves are generated within and can propagate upstream of collisionless shocks. They are known to play a role in electron thermodynamics/acceleration and, under certain conditions, are markedly observed as wave trains preceding the shock ramp. In this paper, we take advantage of Cassini's presence at ~10 AU to explore the importance of whistler mode waves in a parameter regime typically characterized by higher Mach number (median of ~14) shocks, as well as a significantly different interplanetary magnetic field structure, compared to near Earth. We identify electromagnetic precursors preceding a small subset of bow shock crossings with properties which are consistent with whistler mode waves. We find these monochromatic, low-frequency, and circularly polarized waves to have a typical frequency range of 0.2–0.4 Hz in the spacecraft frame. This is due to the lower ion and electron cyclotron frequencies near Saturn, between which whistler waves can develop. The waves are also observed as predominantly right handed in the spacecraft frame, the opposite sense to what is typically observed near Earth. This is attributed to the weaker Doppler shift, owing to the large angle between the solar wind velocity and magnetic field vectors at 10 AU. Our results on the low occurrence of whistler waves upstream of Saturn also underpin the predominantly supercritical bow shock of Saturn

    An in situ Comparison of Electron Acceleration at Collisionless Shocks under Differing Upstream Magnetic Field Orientations

    Get PDF
    A leading explanation for the origin of Galactic cosmic rays is acceleration at high-Mach number shock waves in the collisionless plasma surrounding young supernova remnants. Evidence for this is provided by multi-wavelength non-thermal emission thought to be associated with ultrarelativistic electrons at these shocks. However, the dependence of the electron acceleration process on the orientation of the upstream magnetic field with respect to the local normal to the shock front (quasi-parallel/quasi-perpendicular) is debated. Cassini spacecraft observations at Saturn's bow shock have revealed examples of electron acceleration under quasi-perpendicular conditions, and the first in situ evidence of electron acceleration at a quasi-parallel shock. Here we use Cassini data to make the first comparison between energy spectra of locally accelerated electrons under these differing upstream magnetic field regimes. We present data taken during a quasi-perpendicular shock crossing on 2008 March 8 and during a quasi-parallel shock crossing on 2007 February 3, highlighting that both were associated with electron acceleration to at least MeV energies. The magnetic signature of the quasi-perpendicular crossing has a relatively sharp upstream–downstream transition, and energetic electrons were detected close to the transition and immediately downstream. The magnetic transition at the quasi-parallel crossing is less clear, energetic electrons were encountered upstream and downstream, and the electron energy spectrum is harder above ~100 keV. We discuss whether the acceleration is consistent with diffusive shock acceleration theory in each case, and suggest that the quasi-parallel spectral break is due to an energy-dependent interaction between the electrons and short, large-amplitude magnetic structures

    Preliminary Limits on the WIMP-Nucleon Cross Section from the Cryogenic Dark Matter Search (CDMS)

    Get PDF
    We are conducting an experiment to search for WIMPs, or weakly-interacting massive particles, in the galactic halo using terrestrial detectors. This generic class of hypothetical particles, whose properties are similar to those predicted by extensions of the standard model of particle physics, could comprise the cold component of non-baryonic dark matter. We describe our experiment, which is based on cooled germanium and silicon detectors in a shielded low-background cryostat. The detectors achieve a high degree of background rejection through the simultaneous measurement of the energy in phonons and ionization. Using exposures on the order of one kilogram-day from initial runs of our experiment, we have achieved (preliminary) upper limits on the WIMP-nucleon cross section that are comparable to much longer runs of other experiments.Comment: 5 LaTex pages, 5 eps figs, epsf.sty, espcrc2dsa2.sty. Proceedings of TAUP97, Gran Sasso, Italy, 7-11 Sep 1997, Nucl. Phys. Suppl., A. Bottino, A. di Credico and P. Monacelli (eds.). See also http://cfpa.berkeley.ed

    A Single Deformed Bow Shock for Titan-Saturn System

    Get PDF
    During periods of high solar wind pressure, Saturn’s bow shock is pushed inside Titan’s orbit exposing the moon and its ionosphere to the solar wind. The Cassini spacecraft’s T96 encounter with Titan occurred during such a period and showed evidence for shocks associated with Saturn and Titan. It also revealed the presence of two foreshocks: one prior to the closest approach (foreshock 1) and one after (foreshock 2). Using electromagnetic hybrid (kinetic ions and fluid electrons) simulations and Cassini observations,we showthat the origin of foreshock 1 is tied to the formation of a single deformed bow shock for the Titan-Saturn system. We also report the observations of a structure in foreshock 1 with properties consistent with those of spontaneous hot flow anomalies formed in the simulations and previously observed at Earth, Venus, and Mars. The results of hybrid simulations also show the generation of oblique fast magnetosonic waves upstream of the outbound Titan bow shock in agreement with the observations of large-amplitude magnetosonic pulsations in foreshock 2. We also discuss the implications of a single deformed bow shock for new particle acceleration mechanisms and also Saturn’s magnetopause and magnetosphere

    Detection of Prion Infectivity in Fat Tissues of Scrapie-Infected Mice

    Get PDF
    Distribution of prion infectivity in organs and tissues is important in understanding prion disease pathogenesis and designing strategies to prevent prion infection in animals and humans. Transmission of prion disease from cattle to humans resulted in banning human consumption of ruminant nervous system and certain other tissues. In the present study, we surveyed tissue distribution of prion infectivity in mice with prion disease. We show for the first time detection of infectivity in white and brown fat. Since high amounts of ruminant fat are consumed by humans and also incorporated into animal feed, fat-containing tissues may pose a previously unappreciated hazard for spread of prion infection

    Event Timing in Associative Learning: From Biochemical Reaction Dynamics to Behavioural Observations

    Get PDF
    Associative learning relies on event timing. Fruit flies for example, once trained with an odour that precedes electric shock, subsequently avoid this odour (punishment learning); if, on the other hand the odour follows the shock during training, it is approached later on (relief learning). During training, an odour-induced Ca++ signal and a shock-induced dopaminergic signal converge in the Kenyon cells, synergistically activating a Ca++-calmodulin-sensitive adenylate cyclase, which likely leads to the synaptic plasticity underlying the conditioned avoidance of the odour. In Aplysia, the effect of serotonin on the corresponding adenylate cyclase is bi-directionally modulated by Ca++, depending on the relative timing of the two inputs. Using a computational approach, we quantitatively explore this biochemical property of the adenylate cyclase and show that it can generate the effect of event timing on associative learning. We overcome the shortage of behavioural data in Aplysia and biochemical data in Drosophila by combining findings from both systems
    corecore