2,957 research outputs found
Structure of the protective nematode protease complex H-gal-GP and its conservation across roundworm parasites
Roundworm parasite infections are a major cause of human and livestock disease worldwide and a threat to global food security. Disease control currently relies on anthelmintic drugs to which roundworms are becoming increasingly resistant. An alternative approach is control by vaccination and ‘hidden antigens’, components of the worm gut not encountered by the infected host, have been exploited to produce Barbervax, the first commercial vaccine for a gut dwelling nematode of any host. Here we present the structure of H-gal-GP, a hidden antigen from Haemonchus contortus, the Barber’s Pole worm, and a major component of Barbervax. We demonstrate its novel architecture, subunit composition and topology, flexibility and heterogeneity using cryo-electron microscopy, mass spectrometry, and modelling. Importantly, we demonstrate that complexes with the same architecture are present in other Strongylid roundworm parasites including human hookworm. This suggests a common ancestry and the potential for development of a unified hidden antigen vaccine
Preliminary Limits on the WIMP-Nucleon Cross Section from the Cryogenic Dark Matter Search (CDMS)
We are conducting an experiment to search for WIMPs, or weakly-interacting
massive particles, in the galactic halo using terrestrial detectors. This
generic class of hypothetical particles, whose properties are similar to those
predicted by extensions of the standard model of particle physics, could
comprise the cold component of non-baryonic dark matter. We describe our
experiment, which is based on cooled germanium and silicon detectors in a
shielded low-background cryostat. The detectors achieve a high degree of
background rejection through the simultaneous measurement of the energy in
phonons and ionization. Using exposures on the order of one kilogram-day from
initial runs of our experiment, we have achieved (preliminary) upper limits on
the WIMP-nucleon cross section that are comparable to much longer runs of other
experiments.Comment: 5 LaTex pages, 5 eps figs, epsf.sty, espcrc2dsa2.sty. Proceedings of
TAUP97, Gran Sasso, Italy, 7-11 Sep 1997, Nucl. Phys. Suppl., A. Bottino, A.
di Credico and P. Monacelli (eds.). See also http://cfpa.berkeley.ed
Experimental Quantum Hamiltonian Learning
Efficiently characterising quantum systems, verifying operations of quantum
devices and validating underpinning physical models, are central challenges for
the development of quantum technologies and for our continued understanding of
foundational physics. Machine-learning enhanced by quantum simulators has been
proposed as a route to improve the computational cost of performing these
studies. Here we interface two different quantum systems through a classical
channel - a silicon-photonics quantum simulator and an electron spin in a
diamond nitrogen-vacancy centre - and use the former to learn the latter's
Hamiltonian via Bayesian inference. We learn the salient Hamiltonian parameter
with an uncertainty of approximately . Furthermore, an observed
saturation in the learning algorithm suggests deficiencies in the underlying
Hamiltonian model, which we exploit to further improve the model itself. We go
on to implement an interactive version of the protocol and experimentally show
its ability to characterise the operation of the quantum photonic device. This
work demonstrates powerful new quantum-enhanced techniques for investigating
foundational physical models and characterising quantum technologies
Interactions and potential implications of Plasmodium falciparum-hookworm coinfection in different age groups in south-central Côte d'Ivoire
BACKGROUND: Given the widespread distribution of Plasmodium and helminth infections, and similarities of ecological requirements for disease transmission, coinfection is a common phenomenon in sub-Saharan Africa and elsewhere in the tropics. Interactions of Plasmodium falciparum and soil-transmitted helminths, including immunological responses and clinical outcomes of the host, need further scientific inquiry. Understanding the complex interactions between these parasitic infections is of public health relevance considering that control measures targeting malaria and helminthiases are going to scale.METHODOLOGY: A cross-sectional survey was carried out in April 2010 in infants, young school-aged children, and young non-pregnant women in south-central Côte d'Ivoire. Stool, urine, and blood samples were collected and subjected to standardized, quality-controlled methods. Soil-transmitted helminth infections were identified and quantified in stool. Finger-prick blood samples were used to determine Plasmodium spp. infection, parasitemia, and hemoglobin concentrations. Iron, vitamin A, riboflavin, and inflammation status were measured in venous blood samples.PRINCIPAL FINDINGS: Multivariate regression analysis revealed specific association between infection and demographic, socioeconomic, host inflammatory and nutritional factors. Non-pregnant women infected with P. falciparum had significantly lower odds of hookworm infection, whilst a significant positive association was found between both parasitic infections in 6- to 8-year-old children. Coinfected children had lower odds of anemia and iron deficiency than their counterparts infected with P. falciparum alone.CONCLUSIONS/SIGNIFICANCE: Our findings suggest that interaction between P. falciparum and light-intensity hookworm infections vary with age and, in school-aged children, may benefit the host through preventing iron deficiency anemia. This observation warrants additional investigation to elucidate the mechanisms and consequences of coinfections, as this information could have important implications when implementing integrated control measures against malaria and helminthiases
- …