1,033 research outputs found

    Electronic structure of monolayer and bilayer black phosphorus with charged defects

    Get PDF
    We use an atomistic approach to study the electronic properties of monolayer and bilayer black phosphorus in the vicinity of a charged defect. In particular, we combine screened defect potentials obtained from first-principles linear response theory with large-scale tight-binding simulations to calculate the wave functions and energies of bound acceptor and donor states. As a consequence of the anisotropic band structure, the defect states in these systems form distorted hydrogenic orbitals with a different ordering from that in isotropic materials. For the monolayer, we study the dependence of the binding energies of charged adsorbates on the defect height and the dielectric constant of a substrate in an experimental setup. We also compare our results with an anisotropic effective mass model and find quantitative and qualitative differences when the charged defect is close to the black phosphorus or when the screening from the substrate is weak. For the bilayer, we compare results for charged adsorbates and charged intercalants and find that intercalants induce more prominent secondary peaks in the local density of states because they interact strongly with electronic states on both layers. These insights can be directly tested in scanning tunneling spectroscopy measurements and enable a detailed understanding of the role of Coulomb impurities in electronic devices

    A Preliminary Study of Perception and Coping Mechanism of Breast Cancer Patients in an Iranian City

    Get PDF
    The life expectancy of women in Iran has increased in the last quarter of the 20th century. On the other hand obesity has increased during the first decade of the 21th century for both adult males and females but particularly for females. These trends are contemporary with a growing incidence of breast cancer among women in urban areas. Casual observation has shown that organized and systematic coping support and mechanism for women with breast cancer disease has expanded much less than the treatment technology, leaving surviving women in ambiguity and fear of unknown. The analysis of qualitative data from a preliminary study of women in one city confirms the limited support for coping with the disease and the aftermath of the technology based treatments. Except for a few educated women, the majority of the subject studied in this research saw their situation as catastrophic and ambiguous. They relied on their religious belief and family support to cope with their situation, but had limited success due to their lack of knowledge about the natural order of the disease and consequences of treatment. While there is need for more comprehensive studies of coping strategies using representative sample of breast cancer patients across rural and urban areas of Iran, the findings from the present study calls for organized and systematic community based support system to help women faced with this disease, to cope

    Optical Properties of Charged Defects in Monolayer MoS2_2

    Full text link
    We present theoretical calculations of the optical spectrum of monolayer MoS2_2 with a charged defect. In particular, we solve the Bethe-Salpeter equation based on an atomistic tight-binding model of the MoS2_2 electronic structure which allows calculations for large supercells. The defect is modelled as a point charge whose potential is screened by the MoS2_2 electrons. We find that the defect gives rise to new peaks in the optical spectrum approximately 100-200 meV below the first free exciton peak. These peaks arise from transitions involving in-gap bound states induced by the charged defect. Our findings are in good agreement with experimental measurements

    Adenosine, ‘pertussis-sensitive’ G-proteins, and K+ conductance in central mammalian neurones under energy deprivation

    Get PDF
    There is a striking similarity between the effects of adenosine and of hypoxia or glucose depletion on membrane potential and conductance of hippocampal neurones in tissue slices of rat brain. Both induce a membrane hyperpolarization by an increase in potassium conductance. It seemed likely, therefore, that a rise in extracellular adenosine concentration during energy deprivation may link neuronal metabolism with membrane K+ conductance. To test this hypothesis, we have now investigated the effects of hypoxia/glucose deprivation on hippocampal neurones from pertussis toxin-treated rats. In such slices adenosine had no effect on postsynaptic membrane potential and input resistance. Nevertheless, hypoxia or glucose depletion were as effective as in controls. These data provide evidence against adenosine as the main mediator between cell metabolism and potassium conductance

    Problems of procedural rights abuse

    Get PDF
    In this article, the monographic and scientific publications, the practice of unfair realization of rights by the participants of the process are analyzed based on the analysis of certain international legal act

    Hypoxia induces de novo formation of cerebral collaterals and lessens the severity of ischemic stroke

    Get PDF
    Pial collaterals provide protection in stroke. Evidence suggests their formation late during gestation (collaterogenesis) is driven by reduced oxygen levels in the cerebral watersheds. The purpose of this study was to determine if collaterogenesis can be re-activated in the adult to induce formation of additional collaterals (“neo-collateral formation”, NCF). Mice were gradually acclimated to reduced inspired oxygen (FIO2) and maintained at 12, 10, 8.5 or 7% for two-to-eight weeks. Hypoxemia induced “dose”-dependent NCF and remodeling of native collaterals, and decreased infarct volume after permanent MCA occlusion. In contrast, no formation occurred of addition collateral-like intra-tree anastomoses, PComs, or branches within the MCA tree. Hypoxic NCF, remodeling and infarct protection were durable, i.e. retained for at least six weeks after return to normoxia. Hypoxia increased expression of Hif2α, Vegfa, Rabep2, Angpt2, Tie2 and Cxcr4. Neo-collateral formation was abolished in mice lacking Rabep2, a novel gene involved in VEGFA→Flk1 signaling and required for formation of collaterals during development, and inhibited by knockdown of Vegfa, Flk1 and Cxcr4. Rabep2-dependent NCF was also induced by permanent MCA occlusion. This is the first report that hypoxia induces new pial collaterals to form. Hypoxia- and occlusion-induced neo-collateral formation provide models to study collaterogenesis in the adult

    Resonant and bound states of charged defects in two-dimensional semiconductors

    Get PDF
    A detailed understanding of charged defects in two-dimensional semiconductors is needed for the development of ultrathin electronic devices. Here, we study negatively charged acceptor impurities in monolayer WS2 using a combination of scanning tunneling spectroscopy and large-scale atomistic electronic structure calculations. We observe several localized defect states of hydrogenic wave function character in the vicinity of the valence band edge. Some of these defect states are bound, while others are resonant. The resonant states result from the multivalley valence band structure of WS2, whereby localized states originating from the secondary valence band maximum at Γ hybridize with continuum states from the primary valence band maximum at K/K′. Resonant states have important consequences for electron transport as they can trap mobile carriers for several tens of picoseconds

    Endothelial cell junctions and the regulation of vascular permeability and leukocyte transmigration

    Get PDF
    The endothelial lining of the vasculature forms the physical barrier between the blood and underlying tissues. Junctions between adjacent endothelial cells are dynamically modulated to sustain vascular homeostasis and to support the transendothelial migration of leukocytes during inflammation. A variety of factors initiate intracellular signaling pathways which regulate the opening and resealing of junctional complexes. This review focuses on three primary signaling pathways initiated within endothelial cells by the binding of vasoactive factors and leukocyte adhesion: Rho GTPases, reactive oxygen species, and tyrosine phosphorylation of junctional proteins. These pathways converge to regulate junctional permeability, either by affecting the stability of junctional proteins or by modulating their interactions. Although much progress has been made in understanding the relationships of these pathways, many questions remain to be answered. A full understanding of the signaling cascades that affect endothelial junctions should identify novel therapeutic targets for diseases that involve excessive permeability or inappropriate leukocyte infiltration into tissues
    corecore