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Electronic structure of monolayer and bilayer black phosphorus with charged defects
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We use an atomistic approach to study the electronic properties of monolayer and bilayer black phosphorus
in the vicinity of a charged defect. In particular, we combine screened defect potentials obtained from first-
principles linear response theory with large-scale tight-binding simulations to calculate the wave functions and
energies of bound acceptor and donor states. As a consequence of the anisotropic band structure, the defect states
in these systems form distorted hydrogenic orbitals with a different ordering from that in isotropic materials. For
the monolayer, we study the dependence of the binding energies of charged adsorbates on the defect height and
the dielectric constant of a substrate in an experimental setup. We also compare our results with an anisotropic
effective mass model and find quantitative and qualitative differences when the charged defect is close to the
black phosphorus or when the screening from the substrate is weak. For the bilayer, we compare results for
charged adsorbates and charged intercalants and find that intercalants induce more prominent secondary peaks
in the local density of states because they interact strongly with electronic states on both layers. These insights
can be directly tested in scanning tunneling spectroscopy measurements and enable a detailed understanding of
the role of Coulomb impurities in electronic devices.
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I. INTRODUCTION

Black phosphorus (BP) is a semiconductor consisting of
two-dimensional (2D) layers held together by van der Waals
interactions. Its intrinsic properties, such as the direct band
gap, a highly anisotropic electronic dispersion near the band
extrema [1,2], and high carrier mobilities [3,4], are promis-
ing for applications in electronic and optoelectronic devices,
including transistors, photodetectors, and solar cells [5–8].
However, because of the rapid oxidation of BP in air, these
devices typically require encapsulation to enhance their sta-
bility [9,10]. Similar to graphite, individual monolayers can
be exfoliated from bulk BP [11], resulting in a 2D material
commonly referred to as phosphorene. Monolayer and bilayer
BP also exhibit an anisotropic dispersion relation as well as an
enlarged band gap as a consequence of quantum confinement
[12].

A detailed understanding of defects in monolayer and few-
layer BP is crucial for improving devices. Defects can alter
the material in a variety of ways, such as carrier doping,
modifying carrier lifetimes, and tuning the optical spectrum
[13,14]. A variety of defects have been studied in few-layer
BP, including intrinsic defects such as monovacancies or di-
vacancies [15] and extrinsic defects such as substitutional tin
atoms or iodine and oxygen adatoms [9,16]. If the defect
donates electrons or holes to the BP, it becomes charged and
induces a screened long-ranged Coulomb potential that results
in the formation of bound defect states, which can be observed
in scanning tunneling spectroscopy (STS) experiments. For
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example, Qiu et al. reported that p dopants in BP give rise
to lobed states with a spatial extent of several nanometers
in the tunneling spectrum [17]. These lobed states were also
observed by Wentink et al. [18]. Additionally, devices that rely
on 2D materials are typically placed on a substrate [10], which
can impact the properties of such defect states.

Valuable insights into the properties of charged defects
in 2D materials can be obtained from simulations. However,
modeling such defects is highly challenging because the slow
decay of the screened defect potential requires the use of
extremely large supercells containing thousands of atoms.
As a consequence, standard first-principles techniques, such
as density-functional theory (DFT), become unfeasible for
these systems. To overcome these limitations of atomistic ap-
proaches, electronic continuum theories based on the effective
mass approximation are often used [19,20], which capture the
long-range effects of the screened Coulomb interaction but are
often not sufficiently accurate to predict the ordering of de-
fect states or their binding energies. A favorable compromise
between accuracy and computational efficiency is offered by
tight-binding models. For example, we have recently used the
tight-binding approach in conjunction with a screened defect
potential obtained from first-principles linear response theory
to study charged defects in graphene and also in monolayer
transition-metal dichalcogenides and found excellent agree-
ment with experimental STS measurements [21–26].

In this paper, we carry out atomistic tight-binding calcula-
tions to study the properties of charged defects in monolayer
and bilayer BP. In the presence of a charged defect, bound
states are formed with energies that lie in the band gap [27,28].
We find that these in-gap states are localized to the defect and
form a lobed series with similar nodal structure to that of an
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FIG. 1. (a) Crystal structure of a black phosphorus monolayer.
Armchair and zigzag directions are indicated, and the unit cell of the
pristine crystal is outlined in red. (b) Atomic structure of a charged
intercalant in bilayer BP, where dint = 2.72 Å is the distance between
the intercalant and the top layer effective sheet (red dashed line).

anisotropic 2D hydrogen model. In particular, we calculate
and study the defect wave functions and binding energies,
as well as the local density of states which can be measured
in STS experiments. For monolayer BP, we study both donor
and acceptor adsorbates and investigate the dependence of the
defect properties on the height of the defect above the BP as
well as on the value of the substrate dielectric constant. We
compare the results of the atomistic calculations with results
obtained from a variational effective mass model to assess
the performance of such widely used approaches, finding
good agreement with the tight-binding results for large defect
heights and strongly screening substrates. For bilayer BP, we
focus on the comparison between charged adsorbates and
charged intercalants finding similar energies of in-gap states
but distinct behavior of resonant states in the local density
of states. Our study provides a detailed understanding of the
properties of charged defects in monolayer and bilayer BP
and their tunability through defect engineering, which will be
important for the development of efficient devices.

II. METHODS

A. Monolayer BP

A top view of the atomic structure of the BP monolayer is
shown in Fig. 1(a). In contrast to graphene, the phosphorus
atoms do not all lie in the same plane, but instead form two
sublayers which are covalently bonded to each other. The
charged adsorbate is located a distance d directly above one
of the atoms in the top sublayer. We consider both positively
and negatively charged adsorbates with a charge of ±e (e

being the proton charge). Negatively charged adsorbates are
also referred to as acceptor defects, while positively charged
adsorbates are referred to as donors. Additionally, we assume
that the monolayer is placed on a polarizable substrate with
dielectric constant εsub.

The total defect potential V ±
mono experienced by an electron

localized in one of the sublayers (with V +
mono referring to the

top sublayer and V −
mono referring to the bottom one) can be

expressed as the sum of the unscreened defect potential V ±
0

and the induced potential V ±
ind. The unscreened defect potential

is given by

V ±
0 (q) = vq

εbg
e−q(d+ hs

2 ∓ hs
2 ), (1)

where vq = 2π/q is the 2D Fourier transform of the Coulomb
potential, hs = 2.13 Å is the thickness of the monolayer de-
fined as the distance between the two sublayers, and εbg =
(1 + εsub)/2 is the average dielectric constant of the substrate
beneath and the vacuum above the monolayer.

The induced potential can be calculated from the induced
electron density δnind(q). To calculate the induced density, we
employ the approach that was previously used for transition-
metal dichalcogenides (TMDs) [21,22] and assume that the
induced density is confined to an effective 2D sheet. In the
case of TMDs, this effective sheet is located in the plane of
the metal atoms. For monolayer BP, we assume the sheet to
be located in the plane equidistant from the two sublayers,
which is marked by the red dashed line in the upper inset
of Fig. 2(a). Then the induced potential is the same for both
sublayers (note, however, that the unscreened and therefore
also the total potential are different on the two sublayers) and
is given by

V ±
ind(q) = vq

εbg
e−qhs/2δnind(q). (2)

We expect that the screened potential calculated with this
approach is accurate when the distance from the defect is
significantly larger than the thickness of the BP monolayer.
Within linear response theory, the induced density can be
expressed as

δnind(q) = χ (q)V0(q), (3)

where V0(q) = vqe−q(d+ hs
2 )/εbg is the unscreened defect po-

tential in the effective sheet and χ (q) denotes the interacting
response function, which can be expressed in terms of the
noninteracting response function χ0(q) as

χ (q) = χ0(q)

1 − vqχ0/εbg
, (4)

where χ0(q) is obtained from first-principles calculations
(see discussion below). Note that we have assumed isotropic
screening in the above. This is justified by our explicit
first-principles calculations and in agreement with recent ex-
periments [29].

Combining Eqs. (1) and (2) yields the total defect potential

V ±
mono(q) (5)

=
[

1 − vqχ0(q)e−q( hs
2 ± hs

2 )

εbg − vqχ0(q)(1 − e−q( hs
2 ± hs

2 ) )

]−1

V ±
0 (q). (6)
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FIG. 2. (a) Screened defect potential of a charged adsorbate on
monolayer BP. The black line shows the potential in the top sublayer,
and the red line shows the result for the bottom sublayer. For com-
parison, the unscreened defect potential (green dashed line) is also
shown. The adsorbate is located at d = 2 Å above the top sublayer.
The upper inset shows a schematic of the system, where the red dot
indicates the adsorbate position and the red dashed line indicates the
effective sheet, where the induced charged is assumed to be localized.
Also, hs is the monolayer thickness, and the top and bottom sublayers
are labeled as 1 and 2, respectively. (b) Sublayer-resolved screened
potential of a charged adsorbate (located 2 Å above the topmost
sublayer) on bilayer BP. In the schematic, h denotes the distance
between the monolayers. The lower insets in (a) and (b) show log-log
plots of the screened defect potentials.

Finally, the screened defect potential in real space can be
calculated:

V ±
mono(r) = 1

2π

∫
dq V ±

mono(q)J0(qr), (7)

where J0 is the zeroth Bessel function of the second kind.
To evaluate the screened defect potential, we determine

χ0(q) using the first-principles random-phase approximation
(RPA). For this, we first calculate Kohn-Sham wave func-
tions {|φnk〉} and energies {Enk} of all occupied states and
1490 unoccupied states on a 13 × 13 k-point mesh for a

defect-free BP monolayer using plane-wave pseudopoten-
tial density-functional theory (DFT) as implemented in the
QUANTUM ESPRESSO (v6.5) software package [30]. For these
calculations, the Perdew-Burke-Ernerhof (PBE) [generalized
gradient approximation (GGA)] exchange-correlation func-
tional [31], optimized norm-conserving Vanderbilt (ONCV)
pseudopotentials [32], and a 120-Ry plane-wave cutoff were
used. We then determine the inverse dielectric matrix ε−1

GG′ (q)
as a function of q in the first Brillouin zone (BZ), where G
and G′ are reciprocal lattice vectors. This is achieved using
the BERKELEYGW package [33], by evaluating the Adler-Wiser
formula [34–36]:

ε−1
GG′ (q) = δGG′ + vtr(q + G′)

�

∑
cvk

Mvck(q, G)M∗
cvk(q, G′)

Eck+q − Evk
,

(8)

where M∗
nn′k(q, G) = 〈φnk+q|ei(q+G)·r|φn′k〉, � is the crystal

volume (given by the unit cell volume times the number of
k points), and vtr(q) is the 3D Fourier transform of the slab-
truncated Coulomb interaction [37]. For the RPA calculation,
a plane-wave cutoff of 15 Ry was used.

The anisotropic 2D inverse dielectric function and the
anisotropic noninteracting response function χ ani

0 (q) are then
given by [36]

ε−1
2D (q) = 1

1 − vqχ
ani
0 (q)

(9)

= q

2πe2Lz

∑
GzG′

z

ε−1
GzG′

z
(q)v(q + G′

z ), (10)

where Lz = 18 Å is the distance between periodically repeated
BP monolayers. We find that χ ani

0 (q) only varies by less than
3% as a function of the azimuthal angle justifying our as-
sumption of isotropic screening above. Finally, the isotropic
effective response function χ0(q), which is used to calculate
the screened defect potential in Eq. (2), is obtained as the
angular average of the anisotropic response function.

B. Bilayer BP

Next, we discuss the calculation of the screened defect
potential in the BP bilayer. Again, we express this potential as
the sum of an unscreened potential and an induced potential.
The induced potential is obtained from the induced densities
δn(l )

ind(q) in the two monolayers, with l = 1, 2 denoting the
monolayer. Again, we assume that these induced densities are
located in the effective sheets located between the sublayers
of each monolayer, indicated by the red dashed lines in the
inset of Fig. 2(b). The induced densities can be expressed
in terms of the noninteracting monolayer response functions
χ̃0(q) [which is different from χ0(q) because the monolayers
are part of a bilayer] via

δn(1)
ind(q) =

(
χ̃−1

0 (q) − vq
)
V (1)

0 (q) + vqe−qhV (2)
0 (q)(

χ̃−1
0 (q) − vq

)2 − v2
qe−2qh

, (11)

δn(2)
ind(q) =

(
χ̃−1

0 (q) − vq
)
V (2)

0 (q) + vqe−qhV (1)
0 (q)(

χ̃−1
0 (q) − vq

)2 − v2
qe−2qh

, (12)
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where h = 5.24 Å is the distance between the two effective
sheets and V (l )

0 is the unscreened defect potential experienced
by the effective sheets.

The total potential is then given by

V (l ),±
bi (q) = V (l ),±

0 (q) +
2∑

l ′=1

vqe−q|h±
l −zl′ |δn(l ′ )

ind (q), (13)

where V (l ),±
0 (q) is the unscreened defect potential (with ±

denoting the two sublayers of monolayer l), zl denotes the
z coordinate of the effective sheet associated with monolayer
l , and h±

l is the z coordinate of the top (+) or bottom (−)
sublayer of monolayer l .

To determine χ̃0(q), we compare the screened potential
between two charges located in the same effective sheet from
our screening model, where V (l )

0 = vqe−qh(l−1), with the result
of a first-principles calculation. According to Eq. (13), this
potential is given by

Vscr(q) = vq

[
χ̃−2

0 (q) − χ̃−1
0 (q)vq(1 − e−2qh)

χ̃−2
0 (q) − 2χ̃−1

0 (q)vq + v2
q (1 − e−2qh)

]
. (14)

To calculate this potential from first principles, we follow
the same steps as in the monolayer case [38] to determine
ε−1

2D (q) for the bilayer. Solving ε−1
2D (q)vq = Vscr(q) for χ̃−1

0 (q)
then yields

v−1
q χ̃−1

0 (q) = ε2D(q)(1 − e−2qh) − 2 − M(q, h)

2(ε2D(q) − 1)
, (15)

M(q, h) =
√

ε2
2D(q)(1 − e−2qh)2 + 4e−2qh. (16)

Figures 2(a) and 2(b) show the sublayer-resolved screened
defect potential for a charged adsorbate on monolayer and
bilayer BP. As expected for 2D semiconductors, the screened
potential in all sublayers approaches the unscreened poten-
tial at large distances from the adsorbate. However, at short
distances the screened potential is reduced significantly. In bi-
layer BP, the screened potential in the top monolayer behaves
qualitatively similarly to the monolayer case, but is somewhat
weaker as a consequence of screening from the additional BP
layer. In the bottom monolayer the screened potential is an
order of magnitude smaller than in the top layer and relatively
flat indicating that bound defect states should reside in the top
monolayer.

In addition to adsorbates, we also model charged defects
that are intercalated between the two monolayers of bilayer
BP. In particular, we consider a charge placed equidistant from
two P atoms in the top layer and two P atoms in the bottom
layer [see Fig. 1(b)], which is a typical configuration of inter-
calated transition-metal atoms, such as copper or nickel [16].

To study the behavior of electrons in the presence of a
charged defect, we use the tight-binding model of Rudenko
et al. [39], which includes hoppings between phosphorus pz

orbitals. The band structures of monolayer and bilayer BP
from this approach are shown in Fig. 3. For the monolayer a
direct band gap at 	 of 1.84 eV is obtained, which is consistent
with GW0 calculations [39]. For the bilayer, the band gap is
reduced to 1.15 eV as a consequence of interlayer hopping.
Importantly, both the monolayer and the bilayer exhibit highly
anisotropic effective masses in both the conduction and va-
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Γ ΓX S Y

Γ ΓX S Y
FIG. 3. Electronic band structure of (a) monolayer and (b) bi-

layer black phosphorus from tight binding. The inset of (a) indicates
the high-symmetry points of the Brillouin zone. All energies are
referenced to the valence band maximum.

lence band. Table I shows that the effective masses in the
zigzag direction mz are about one order of magnitude larger
than in the armchair direction ma.

Next, the screened defect potential is included as an addi-
tional on-site potential in the tight-binding Hamiltonian. To
describe the slow decay of the screened defect potential, a
60 × 60 supercell is used containing 14 400 P atoms for the
monolayer and 28 800 P atoms in the bilayer calculations.
We sample at the 	 point to obtain the binding energies and
wave functions of the defect supercell. For the local density
of states (LDOS), we use a 3 × 3 k-point grid and a Gaussian
broadening with an energy width of 50 meV.

TABLE I. Effective masses along the armchair (ma) and zigzag
(mz) directions at the 	 point for monolayer and bilayer BP from
the tight-binding model of Rudenko et al. [39] calculated using a
fourth-order finite-difference approximation to the second derivative
of the bands. Note that me denotes the free electron mass.

Monolayer Bilayer

Electron Hole Electron Hole

m∗
a/me 0.196 0.166 0.180 0.152

m∗
z/me 1.160 3.241 1.530 1.362
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We compare the results of our atomistic calculations with
a variational calculation based on the effective mass approx-
imation. In this method, the following ansatz is made for the
most strongly bound defect state:


1s(r; α, β ) =
√

2αβ

π
e−

√
(αx)2+(βy)2

, (17)

where r = (x, y) and α, β are parameters that describe the
decay of the defect state. Note that this form of the wave
function does not describe the sublayer structure of the BP
monolayer.

To enable a quantitative comparison between the binding
energies of defect states obtained from the atomistic calcu-
lations and the effective mass approach, the position of the
plane in which the wave function in Eq. (17) is localized must
be chosen. As Fig. 2 shows that the screened defect potential
has a significantly larger value in the top sublayer than in
the other sublayers, we assume that the wave function of the
most strongly bound 1s state is primarily localized in the top
sublayer.

The expectation value of the effective mass Hamiltonian is
then given by

〈
1s(α, β )|H |
1s(α, β )〉 = h̄2

4

(
α2

m∗
a

+ β2

m∗
z

)
+ V (α, β ),

(18)

V (α, β ) = 2

π

∫
dr re−2r

∫
dθ Vdef

(∣∣∣∣
(

rcosθ

α
,

rsinθ

β

)∣∣∣∣
)

,

(19)

Vdef(r) = e2

4πε0

∫
dq

J0(qr)e−qd

εsub−1
2 + ε2D(q)

, (20)

where Vdef is the defect potential.

III. MONOLAYER BLACK PHOSPHORUS

A. Bound-state wave functions

Figure 4 shows the wave functions of the bound defect
states in monolayer BP induced by a negatively charged ac-
ceptor adsorbate (for example, a fluorine adatom [40,41]) with
a height of d = 2 Å above the top sublayer. Panels (i)–(v)
of Fig. 4(a) show results for a substrate with εsub = 2 (cor-
responding to a teflon substrate [42]), while panels (i)–(v)
of Fig. 4(c) show results for εsub = 8 (corresponding to a
gallium nitride substrate [43]). As a consequence of the large
difference in the effective masses in the armchair and zigzag
directions, these wave functions resemble anisotropically dis-
torted 2D hydrogenic orbitals, and we therefore label them as
1s (i), 2py (ii), 2s (iii), 3py (iv), and 2px (v). Note that the
ordering of the defect states is different from that in the 2D
hydrogen atom as a consequence of the anisotropic dispersion,
which lowers the energy of states that are elongated along
the zigzag direction compared with those along the armchair
direction. For example, the 2px and the 2py orbitals are de-
generate in the 2D hydrogen atom, but in monolayer BP the
binding energy of the 2py state is almost 0.2 eV larger than
that of the 2px state. Projecting the defect wave functions onto
the unperturbed monolayer states in the first Brillouin zone,
as shown in panels (i)–(v) of Fig. 4(b) for the states shown in

panels (i)–(v) of Fig. 4(a) and in panels (i)–(v) of Fig. 4(d)
for the states shown in panels (i)–(v) of Fig. 4(c), reveals that
they are predominantly constructed from bulk valence states
near the valence band maximum at the 	 point. Importantly,
we find that the projections are delocalized over a large part
of the first Brillouin zone.

Figure 4 also demonstrates that increasing the substrate
dielectric constant from εsub = 2 to εsub = 8 causes the defect
states to become more delocalized and their projections to
become more localized to the vicinity of the 	 point. We
also observe changes in the ordering of the defect states with
the fifth state exhibiting a different symmetry for εsub = 8 as
compared with the case of εsub = 2.

Results for a positively charged donor adsorbate (for ex-
ample, a K adatom [44]) or a Cu adatom [45] are shown in
the Supplemental Material [46]. The donor states are similar
in shape and spatial extent to the acceptor states, but have a
different ordering of the 2px state relative to the 3py state.

B. Binding energies

Figure 5 shows the binding energies of the 1s defect state
as a function of the defect height d and the substrate dielectric
constant εsub. As expected, an increase in εsub reduces the
binding energies as the defect potential is weaker. Interest-
ingly, we find for small defect heights (d = 1.5 Å) and weakly
screening substrates (εsub < 3) that the binding energy of the
acceptor state exceeds the size of the band gap; see Fig. 5(a).
In this case, the defect state becomes resonant with the con-
duction band states. Similarly, the donor states can become
resonant with valence band states. We find that binding en-
ergies of acceptors are generally larger than those of donor
impurities. This can be attributed to the larger value of m∗

z
at the valence band maximum compared with the conduction
band minimum; see Table I.

Figures 5(c) and 5(d) show the binding energies obtained
from the variational effective mass approach; see Eq. (17).
We find that the results from this approach are generally in
good qualitative agreement with the atomistic calculations,
but there are some important differences. In particular, we find
that the effective mass approximation underestimates binding
energies when the defect is close to the monolayer and the
substrate has a small dielectric constant. Most importantly, the
effective mass approximation does not reproduce the result
that the most strongly bound defect state can cross the entire
band gap and become resonant with bulk states.

This failure of the effective mass approximation can be
understood by analyzing the projection of the defect state onto
bulk monolayer states. As discussed above (see Fig. 4), the
projections for the most strongly bound 1s state are delocal-
ized over a larger part of the first Brillouin zone. However, the
effective mass approximation is based on the assumption of
an anisotropic parabolic dispersion which is only valid near
the conduction and valence band edges.

To quantitatively assess the validity of the effective mass
approximation (EMA), we calculate

�EEMA ≡
∑

k

|〈nk|
1s〉|2
∣∣∣∣∣Enk − h̄2k2

x

2m∗
a

− h̄2k2
y

2m∗
z

∣∣∣∣∣, (21)
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FIG. 4. (a) and (c) Wave functions of the five most strongly bound acceptor states [panels (i)–(v)] in monolayer black phosphorus and
(b) and (d) their projections onto pristine monolayer states in the first Brillouin zone, with the 	 point located in the center of each panel. The
substrate dielectric constant is εsub = 2 in (a) and (b) and εsub = 8 in (c) and (d). The adsorbate is a single negative charge at a height of d = 2 Å
in all cases. All defect binding energies Ebind are given relative to the valence band edge.

which measures the importance of deviations from a parabolic
dispersion for the defect state binding energies. In this equa-
tion, 〈nk|
1s〉 denotes the projection of the most strongly
bound 1s defect state (from the atomistic calculation) onto the
pristine monolayer state |nk〉 (where the band index n refers
to the highest valence band for acceptor states and the lowest
conduction band for donor states). Also, k denotes a crystal
momentum, and Enk is the tight-binding band structure of the
monolayer.

Figures 5(e) and 5(f) show �EEMA for the most strongly
bound acceptor and donor states. As expected, we find that
�EEMA is large for small defect heights and small values of
the substrate dielectric constant. Comparing donor and ac-
ceptor states, we observe that �EEMA is larger for acceptor
states. This is because the lowest conduction bands are more
parabolic and can therefore be accurately described by an
anisotropic effective mass model over a larger region of the
Brillouin zone than the valence states.

C. Local density of states

Figure 6 shows the local density of states (LDOS) for
monolayer BP with positively or negatively charged adsor-
bates along the zigzag and armchair directions. The LDOS is
directly accessible in scanning tunneling spectroscopy (STS)
measurements. For a substrate with εsub = 2, an acceptor
defect gives rise to a strong peak several tenths of an eV
above the valence band maximum which originates from the
1s bound state; see Figs. 6(a) and 6(c). This peak is followed
by a series of closely spaced peaks near the valence band
maximum. Strong defect-induced band bending can be ob-
served in the conduction band. Comparing the acceptor LDOS
along the armchair and zigzag directions, we find that peaks
are more extended along the armchair directions reflecting the
anisotropy of the defect wave functions; see Fig. 4. For a sub-
strate with εsub = 8, the 1s peak is much closer to the valence
band, and the additional peaks from less strongly bound defect
states cannot be observed clearly; see Figs. 6(b) and 6(d). For
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FIG. 5. (a) and (b) Binding energy Ebind of acceptor (a) and donor (b) 1s defect states as a function of substrate dielectric constant εsub

and defect height d , obtained from atomistic tight-binding (TB) calculations. The band gap Eg is shown as a black dashed line, and the data
points for the 1s state binding energies that exceed Eg have been omitted. (c) and (d) Corresponding results from the variational effective mass
approximation (EMA). (e) and (f) Average parabolic energy deviation �EEMA of the 1s state [see Eq. (21)] for the case of acceptor (e) and
donor (f), shown as a function of εsub for the same d values as in (a)–(d).

donor adsorbates, we observe peaks near the conduction band
arising from bound states as well as a downward bending of
the valence band.

IV. BILAYER BLACK PHOSPHORUS

A. Bound-state wave functions

Figure 7(a) shows the most strongly bound defect states
of a negatively charged adsorbate on bilayer BP. The defect
wave functions have similar shapes and nodal structures to
those in the monolayer case, but a larger spatial extent. The
wave functions in the bottom layer have a similar shape to

that of the wave functions in the top layer, but the intensity
is significantly reduced as a result of the screening by the
top layer; see Fig. 2(b). As in the monolayer, the bilayer
defect states are primarily composed of 	-point states of the
pristine bilayer. We find similar results for the case of a donor
adsorbate, but the order of states (iv) and (v) in Fig. 7(a) is
switched; see Supplemental Material [46].

The defect wave functions of a negatively charged inter-
calant are shown in Fig. 7(b). In contrast to the adsorbate
case, the wave functions for this system have a similar in-
tensity on both layers. Interestingly, the wave function of the
most strongly bound state exhibits two peaks in the top layer
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FIG. 6. Local density of states for charged adsorbates (with d = 2 Å) on monolayer BP with εsub = 2 (left column) and εsub = 8 (right
column), for (a)–(d) acceptor defects and (e)–(h) donor defects. Results are shown both along the armchair direction and along the zigzag
direction.

but only a single peak in the bottom layer; see panel (i) of
Fig. 7(b). The splitting of this state into two peaks is an
interference effect caused by the location of the intercalant
below the center of a zigzag bond; see Fig. 1. The three most
strongly bound states of the acceptor intercalant have a similar
nodal structure to that in the adsorbate case. However, the
fourth and the fifth states look very different and appear to

be mixtures of the corresponding adsorbate states (which are
very close in energy).

B. Binding energies

Figure 8 shows the binding energies of the most strongly
bound defect states of both acceptor and donor adsorbates on
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FIG. 7. Wave functions of the five most strongly bound acceptor
states in bilayer BP in the top monolayer. (a) Results for a negatively
charged adsorbate d = 2 Å above the top sublayer and εsub = 1, and
(b) results for a negatively charged intercalant. The wave functions
in the bottom monolayer are shown in the insets.

freestanding (εsub = 1) bilayer BP as a function of the defect
height. For comparison, results for the freestanding monolayer
are also shown. As expected, the binding energies decrease

FIG. 8. Comparison of binding energies of various bound defect
states in freestanding monolayer BP (dashed lines) and freestanding
bilayer BP (solid lines) for (a) donor and (b) acceptor adsorbates. The
band gaps of the monolayer (ML) and bilayer (BL) are shown as red
dashed and red solid horizontal lines, respectively. Note that E2s,2px

denotes the binding energy of a bound state that is a mixture of 2s
and 2px-like states. If two states with a similar character are found,
one of them is indicated by a prime.
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with increasing defect height, but the decrease is most pro-
nounced for the 1s state. For very small defect heights, the
binding energy of the 1s state exceeds the band gap, and the
state becomes resonant with the valence band (in case of donor
impurities) or the conduction band (in case of acceptors). The
behavior of the 1s binding energy is a consequence of its lo-
calized wave function, which is strongly confined to the direct
vicinity of the defect. As a consequence, the electrons in the 1s
state only experience the defect potential close to the defect,
which decays as 1/d . Comparing the binding energies of the
monolayer and the bilayer cases, we find that the monolayer
binding energies of the 1s state are ∼0.4–0.5 eV larger than in
the bilayer case and the difference is insensitive to the defect
height.

In contrast, the binding energies of the other states (with
only the exception of the 2s state, which is also strongly
localized) are less sensitive to the defect height as their wave
functions are much more delocalized. Again, the monolayer
states behave similarly, but their binding energies are about
0.5 eV larger than for the bilayer.

V. LOCAL DENSITY OF STATES

Figures 9(a) and 9(b) show the LDOS ρ(E , r) of an accep-
tor adsorbate on bilayer BP as a function of energy for several
distances from the defect along the armchair and zigzag di-
rections, respectively. The LDOS exhibits a prominent peak
in the gap which can be attributed to the strongly bound and
localized 1s state. As a result of BP’s anisotropy, the peak
decays less rapidly along the armchair direction. Additional
peaks are found close to the valence band edge, which can be
clearly seen along the zigzag direction. The acceptor defect
induces a flattening of the LDOS associated with conduction
band states arising from band bending [21–23]. As the dis-
tance from the defect increases, the LDOS converges to that
of the pristine bilayer.

For the donor case, shown in Figs. 9(c) and 9(d) along the
armchair and zigzag directions, respectively, we again find a
prominent peak arising from the 1s state as well as smaller
additional features at the conduction band edge.

The LDOSs of charged intercalants are shown in
Figs. 9(e)–9(h). Again, the most strongly bound state gives
rise to a prominent in-gap peak, but in contrast to the adsorbate
case, we see stronger additional peaks along both the zigzag
direction and the armchair direction. These additional peaks
are resonant with the valence (conduction) band for acceptor
(donor) intercalants and decay quickly as the distance from
the defect is increased indicating that they originate from
localized defect states.

The different electronic properties of charged adsorbates
and charged intercalants in bilayer BP can be understood
from an analysis of the band structure; see Fig. 3(b). The
difference in electronic response between a defect adsorbed
to the top layer and one intercalated between the layers can be
explained in terms of the secondary conduction and valence
band extrema at the 	 point in the bilayer system, seen in
Fig. 3(b). In particular, the hybridization between the highest
valence (conduction) bands of the two monolayers gives rise
to a pair of valence (conduction) bands near 	 with similar
dispersion but an energy splitting of 0.85 eV for the valence

bands and 0.59 eV for the conduction bands. When a charged
defect is present, each of these bands forms a set of distorted
hydrogenic defect states [21,28], but the defect states arising
from the secondary valence (conduction) bands are resonant
with the delocalized valence band states. Moreover, the sec-
ondary valence and conduction band states are moderately
more composed of the orbitals of the inner P atoms, which the
intercalant is closer to, while the highest-lying valence band
and the lowest-lying conduction band are more composed of
the orbitals of the outer P atoms. As a consequence, charged
intercalants interact more strongly with those secondary va-
lence and conduction band states than in the adsorbate case,
which explains the stronger secondary peaks observed in the
LDOS.

Finally, we compare our results with experimental find-
ings. Importantly, most experimental scanning tunneling
microscopy (STM) studies of charged defects are carried out
on surfaces of bulk BP and not on monolayer or bilayer sys-
tems [17,18]. In these experiments, a dumbbell-shaped defect
state is observed with a spatial extent of several nanometers.
The shape and size of this state are quite similar to those
of the 2px state shown in panel (v) of Figs. 4(a). However,
none of the other bound states has been observed yet. It is
tempting to treat the top layer of a BP surface as a monolayer
on a dielectric substrate (with a substrate dielectric constant
of εsub ∼ 10). For such a large substrate dielectric constant, all
bound defect states fall into a very narrow energy range close
to the band edge, and it might be difficult experimentally to
resolve individual states. The dumbbell-shaped state is more
delocalized than states with a larger binding energy, and it is
possible that this is the reason why it is most easily identifi-
able in STM experiments. However, additional calculations of
charged defects on BP surfaces are needed to fully resolve this
issue.

VI. CONCLUSIONS

In this paper, we have used large-scale tight-binding sim-
ulations to study the electronic structure of monolayer and
bilayer black phosphorus (BP) with charged defects. The
screened potential induced by the defect is obtained from
first-principles linear response theory and decays slowly ne-
cessitating the use of large supercells containing thousands
of atoms. The presence of the defect potential gives rise to
the formation of bound states that resemble anisotropically
distorted hydrogenic orbitals. We have studied the binding
energies of these states as a function of the defect position
and also of the dielectric constant of the substrate. In the
monolayer, the binding energy of acceptor states is larger
than that of donor states as a consequence of the different
effective masses in the conduction and valence bands. We
compare the results of our atomistic calculations with an ef-
fective mass model and find significant differences for small
defect heights. When the defect is close to the BP layer, its
wave function contains contributions from states in a large
region around the 	 point of the Brillouin zone of the pristine
system, and the bands in this region are not well described
by an effective mass approximation. We have also computed
the local density of states in the vicinity of the charged
defects, which is directly accessible in scanning tunneling
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FIG. 9. (a)–(d) Local density of states (LDOS) of a charged adsorbate placed 2 Å above the top sublayer of the top layer of bilayer BP,
shown for the acceptor case along the armchair (a) and zigzag directions (b) and shown for the donor case along the armchair (c) and zigzag
directions (d). (e)–(h) LDOS of a charged intercalant, shown for the acceptor case along the armchair (e) and zigzag directions (f) and shown
for the donor case along the armchair (g) and zigzag directions (h).

spectroscopy measurements. Finally, we have studied charged
defects in bilayer BP and found that the behavior of charged
adsorbates is similar to that in the monolayer (but with lower
binding energies), while charged intercalants give rise to
stronger additional peaks in the local density of states. In con-
clusion, our calculations provide a detailed understanding of
the electronic properties of charged impurities in monolayer
and bilayer black phosphorus, which will help realize poten-
tial device applications of these materials. For example, it is

possible to tune the energy of the bound defect states through
substrate engineering, which in turn enables control of the op-
tical band gap, the temperature at which defects become ion-
ized, and whether they act as shallow impurities or deep traps.
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