320 research outputs found

    Microenvironmental immune cell alterations across the spectrum of nodular lymphocyte predominant Hodgkin lymphoma and T-cell/histiocyte-rich large B-cell lymphoma

    Get PDF
    BACKGROUND: The clinicopathological spectrum of nodular lymphocyte predominant Hodgkin lymphoma (NLPHL), also known as nodular lymphocyte predominant B-cell lymphoma, partially overlaps with T-cell/histiocyte-rich large B-cell lymphoma (THRLCBL). NLPHL histology may vary in architecture and B-cell/T-cell composition of the tumour microenvironment. However, the immune cell phenotypes accompanying different histological patterns remain poorly characterised. METHODS: We applied a multiplexed immunofluorescence workflow to identify differential expansion/depletion of multiple microenvironmental immune cell phenotypes between cases of NLPHL showing different histological patterns (as described by Fan et al, 2003) and cases of THRLBCL. RESULTS: FOXP3-expressing T-regulatory cells were conspicuously depleted across all NLPHL cases. As histology progressed to variant Fan patterns C and E of NLPHL and to THRLBCL, there were progressive expansions of cytotoxic granzyme-B-expressing natural killer and CD8-positive T-cells, PD1-expressing CD8-positive T-cells, and CD163-positive macrophages including a PDL1-expressing subset. These occurred in parallel to depletion of NKG2A-expressing natural killer and CD8-positive T-cells. DISCUSSION: These findings provide new insights on the immunoregulatory mechanisms involved in NLPHL and THLRBCL pathogenesis, and are supportive of an increasingly proposed biological continuum between these two lymphomas. Additionally, the findings may help establish new biomarkers of high-risk disease, which could support a novel therapeutic program of immune checkpoint interruption targeting the PD1:PDL1 and/or NKG2A:HLA-E axes in the management of high-risk NLPHL and THRLBCL

    Artificial neural networks to solve the singular model with Neumann–Robin, Dirichlet and Neumann boundary conditions

    Get PDF
    The aim of this work is to solve the case study singular model involving the Neumann–Robin, Dirichlet, and Neumann boundary conditions using a novel computing framework that is based on the artificial neural network (ANN), global search genetic algorithm (GA), and local search sequential quadratic programming method (SQPM), i.e., ANN-GA-SQPM. The inspiration to present this numerical framework comes through the objective of introducing a reliable structure that associates the operative ANNs features using the optimization procedures of soft computing to deal with such stimulating systems. Four different problems that are based on the singular equations involving Neumann–Robin, Dirichlet, and Neumann boundary conditions have been occupied to scrutinize the robustness, stability, and proficiency of the designed ANN-GA-SQPM. The proposed results through ANN-GA-SQPM have been compared with the exact results to check the efficiency of the scheme through the statistical performances for taking fifty independent trials. Moreover, the study of the neuron analysis based on three and 15 neurons is also performed to check the authenticity of the proposed ANN-GA-SQPM

    Feature extraction for the analysis of colon status from the endoscopic images

    Get PDF
    BACKGROUND: Extracting features from the colonoscopic images is essential for getting the features, which characterizes the properties of the colon. The features are employed in the computer-assisted diagnosis of colonoscopic images to assist the physician in detecting the colon status. METHODS: Endoscopic images contain rich texture and color information. Novel schemes are developed to extract new texture features from the texture spectra in the chromatic and achromatic domains, and color features for a selected region of interest from each color component histogram of the colonoscopic images. These features are reduced in size using Principal Component Analysis (PCA) and are evaluated using Backpropagation Neural Network (BPNN). RESULTS: Features extracted from endoscopic images were tested to classify the colon status as either normal or abnormal. The classification results obtained show the features' capability for classifying the colon's status. The average classification accuracy, which is using hybrid of the texture and color features with PCA (τ = 1%), is 97.72%. It is higher than the average classification accuracy using only texture (96.96%, τ = 1%) or color (90.52%, τ = 1%) features. CONCLUSION: In conclusion, novel methods for extracting new texture- and color-based features from the colonoscopic images to classify the colon status have been proposed. A new approach using PCA in conjunction with BPNN for evaluating the features has also been proposed. The preliminary test results support the feasibility of the proposed method

    Bio-nanotechnology application in wastewater treatment

    Get PDF
    The nanoparticles have received high interest in the field of medicine and water purification, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modification of nanoparticles and their properties were also discussed

    Outcome of a risk-related therapeutic strategy used prospectively in a population-based study of Hodgkin's lymphoma in adolescents

    Get PDF
    The aim was to assess outcome in a population-based cohort of adolescents with Hodgkin's lymphoma (HL) diagnosed in the UK's northern region over a 10-year period. Among a population of 3.09 million, 55 of 676 patients (8%) diagnosed with HL were aged 13–19. Seven had nodular lymphocyte-predominant HL, 48 classical HL (cHL). Of the latter, 36 were ⩾16 years. Application of the Scottish and Newcastle Lymphoma Group (SNLG) prognostic index meant 21 patients were considered high risk (index ⩾0.5). They received PVACEBOP multi-agent chemotherapy as primary therapy. Standard risk patients (SNLG index <0.5) were treated with standard ChlVPP or ABVD chemotherapy±radiotherapy. Scottish and Newcastle Lymphoma Group indexing is not valid for patients under 16. Twelve patients therefore received UKCCSG protocols (n=8), ABVD plus radiotherapy (n=2), or PVACEBOP (n=2). Forty-six patients with cHL (96%) achieved complete remission. Seven patients relapsed but all entered complete remission after salvage therapy. Five patients died: three of HL, one in an accident and one of disseminated varicella complicating cystic fibrosis. Five- and 10-year overall survival was 93 and 86%, respectively; disease-specific survival was 95 and 92%. The data suggest that older adolescents with high-risk HL require intensive protocols as primary therapy to secure optimal outcome

    PEG-Albumin Plasma Expansion Increases Expression of MCP-1 Evidencing Increased Circulatory Wall Shear Stress: An Experimental Study

    Get PDF
    Treatment of blood loss with plasma expanders lowers blood viscosity, increasing cardiac output. However, increased flow velocity by conventional plasma expanders does not compensate for decreased viscosity in maintaining vessel wall shear stress (WSS), decreasing endothelial nitric oxide (NO) production. A new type of plasma expander using polyethylene glycol conjugate albumin (PEG-Alb) causes supra-perfusion when used in extreme hemodilution and is effective in treating hemorrhagic shock, although it is minimally viscogenic. An acute 40% hemodilution/exchange-transfusion protocol was used to compare 4% PEG-Alb to Ringer’s lactate, Dextran 70 kDa and 6% Hetastarch (670 kDa) in unanesthetized CD-1 mice. Serum cytokine analysis showed that PEG-Alb elevates monocyte chemotactic protein-1 (MCP-1), a member of a small inducible gene family, as well as expression of MIP-1α, and MIP-2. MCP-1 is specific to increased WSS. Given the direct link between increased WSS and production of NO, the beneficial resuscitation effects due to PEG-Alb plasma expansion appear to be due to increased WSS through increased perfusion and blood flow rather than blood viscosity

    EGCG Enhances the Therapeutic Potential of Gemcitabine and CP690550 by Inhibiting STAT3 Signaling Pathway in Human Pancreatic Cancer

    Get PDF
    Background: Signal Transducer and Activator of Transcription 3 (STAT3) is an oncogene, which promotes cell survival, proliferation, motility and progression in cancer cells. Targeting STAT3 signaling may lead to the development of novel therapeutic approaches for human cancers. Here, we examined the effects of epigallocathechin gallate (EGCG) on STAT3 signaling in pancreatic cancer cells, and assessed the therapeutic potential of EGCG with gemcitabine or JAK3 inhibitor CP690550 (Tasocitinib) for the treatment and/or prevention of pancreatic cancer. Methodology/Principal Findings: Cell viability and apoptosis were measured by XTT assay and TUNEL staining, respectively. Gene and protein expressions were measured by qRT-PCR and Western blot analysis, respectively. The results revealed that EGCG inhibited the expression of phospho and total JAK3 and STAT3, STAT3 transcription and activation, and the expression of STAT3-regulated genes, resulting in the inhibition of cell motility, migration and invasion, and the induction of caspase-3 and PARP cleavage. The inhibition of STAT3 enhanced the inhibitory effects of EGCG on cell motility and viability. Additionally, gemcitabine and CP690550 alone inhibited STAT3 target genes and synergized with EGCG to inhibit cell viability and induce apoptosis in pancreatic cancer cells. Conclusions/Significance: Overall, these results suggest that EGCG suppresses the growth, invasion and migration of pancreatic cancer cells, and induces apoptosis by interfering with the STAT3 signaling pathway. Moreover, EGCG furthe

    Perspectives on the Trypanosoma cruzi-host cell receptor interaction

    Get PDF
    Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets

    Neutralization potency of monoclonal antibodies recognizing dominant and subdominant epitopes on SARS-CoV-2 Spike is impacted by the B.1.1.7 variant

    Get PDF
    Interaction of the SARS-CoV-2 Spike receptor binding domain (RBD) with the receptor ACE2 on host cells is essential for viral entry. RBD is the dominant target for neutralizing antibodies, and several neutralizing epitopes on RBD have been molecularly characterized. Analysis of circulating SARS-CoV-2 variants has revealed mutations arising in the RBD, N-terminal domain (NTD) and S2 subunits of Spike. To understand how these mutations affect Spike antigenicity, we isolated and characterized >100 monoclonal antibodies targeting epitopes on RBD, NTD, and S2 from SARS-CoV-2-infected individuals. Approximately 45% showed neutralizing activity, of which ∼20% were NTD specific. NTD-specific antibodies formed two distinct groups: the first was highly potent against infectious virus, whereas the second was less potent and displayed glycan-dependant neutralization activity. Mutations present in B.1.1.7 Spike frequently conferred neutralization resistance to NTD-specific antibodies. This work demonstrates that neutralizing antibodies targeting subdominant epitopes should be considered when investigating antigenic drift in emerging variants

    Generic Delivery of Payload of Nanoparticles Intracellularly via Hybrid Polymer Capsules for Bioimaging Applications

    Get PDF
    Towards the goal of development of a generic nanomaterial delivery system and delivery of the ‘as prepared’ nanoparticles without ‘further surface modification’ in a generic way, we have fabricated a hybrid polymer capsule as a delivery vehicle in which nanoparticles are loaded within their cavity. To this end, a generic approach to prepare nanomaterials-loaded polyelectrolyte multilayered (PEM) capsules has been reported, where polystyrene sulfonate (PSS)/polyallylamine hydrochloride (PAH) polymer capsules were employed as nano/microreactors to synthesize variety of nanomaterials (metal nanoparticles; lanthanide doped inorganic nanoparticles; gadolinium based nanoparticles, cadmium based nanoparticles; different shapes of nanoparticles; co-loading of two types of nanoparticles) in their hollow cavity. These nanoparticles-loaded capsules were employed to demonstrate generic delivery of payload of nanoparticles intracellularly (HeLa cells), without the need of individual nanoparticle surface modification. Validation of intracellular internalization of nanoparticles-loaded capsules by HeLa cells was ascertained by confocal laser scanning microscopy. The green emission from Tb3+ was observed after internalization of LaF3:Tb3+(5%) nanoparticles-loaded capsules by HeLa cells, which suggests that nanoparticles in hybrid capsules retain their functionality within the cells. In vitro cytotoxicity studies of these nanoparticles-loaded capsules showed less/no cytotoxicity in comparison to blank capsules or untreated cells, thus offering a way of evading direct contact of nanoparticles with cells because of the presence of biocompatible polymeric shell of capsules. The proposed hybrid delivery system can be potentially developed to avoid a series of biological barriers and deliver multiple cargoes (both simultaneous and individual delivery) without the need of individual cargo design/modification
    corecore