101 research outputs found

    The 2020 special report of the MJA–Lancet Countdown on health and climate change: lessons learnt from Australia's "Black Summer"

    Get PDF
    The MJA-Lancet Countdown on health and climate change was established in 2017, and produced its first Australian national assessment in 2018 and its first annual update in 2019. It examines indicators across five broad domains: climate change impacts, exposures and vulnerability; adaptation, planning and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. In the wake of the unprecedented and catastrophic 2019-20 Australian bushfire season, in this special report we present the 2020 update, with a focus on the relationship between health, climate change and bushfires, highlighting indicators that explore these linkages. In an environment of continuing increases in summer maximum temperatures and heatwave intensity, substantial increases in both fire risk and population exposure to bushfires are having an impact on Australia's health and economy. As a result of the "Black Summer" bushfires, the monthly airborne particulate matter less than 2.5 μm in diameter (PM2.5 ) concentrations in New South Wales and the Australian Capital Territory in December 2019 were the highest of any month in any state or territory over the period 2000-2019 at 26.0 μg/m3 and 71.6 μg/m3 respectively, and insured economic losses were $2.2 billion. We also found growing awareness of and engagement with the links between health and climate change, with a 50% increase in scientific publications and a doubling of newspaper articles on the topic in Australia in 2019 compared with 2018. However, despite clear and present need, Australia still lacks a nationwide adaptation plan for health. As Australia recovers from the compounded effects of the bushfires and the coronavirus disease 2019 (COVID-19) pandemic, the health profession has a pivotal role to play. It is uniquely suited to integrate the response to these short term threats with the longer term public health implications of climate change, and to argue for the economic recovery from COVID-19 to align with and strengthen Australia's commitments under the Paris Agreement

    Emergent complex neural dynamics

    Full text link
    A large repertoire of spatiotemporal activity patterns in the brain is the basis for adaptive behaviour. Understanding the mechanism by which the brain's hundred billion neurons and hundred trillion synapses manage to produce such a range of cortical configurations in a flexible manner remains a fundamental problem in neuroscience. One plausible solution is the involvement of universal mechanisms of emergent complex phenomena evident in dynamical systems poised near a critical point of a second-order phase transition. We review recent theoretical and empirical results supporting the notion that the brain is naturally poised near criticality, as well as its implications for better understanding of the brain

    Expression and DNA methylation of TNF, IFNG and FOXP3 in colorectal cancer and their prognostic significance.

    Get PDF
    BACKGROUND: Colorectal cancer (CRC) progression is associated with suppression of host cell-mediated immunity and local immune escape mechanisms. Our aim was to assess the immune function in terms of expression of TNF, IFNG and FOXP3 in CRC. METHODS: Sixty patients with CRC and 15 matched controls were recruited. TaqMan quantitative PCR and methylation-specific PCR was performed for expression and DNA methylation analysis of TNF, IFNG and FOXP3. Survival analysis was performed over a median follow-up of 48 months. RESULTS: TNF was suppressed in tumour and IFNG was suppressed in peripheral blood mononuclear cells (PBMCs) of patients with CRC. Tumours showed enhanced expression of FOXP3 and was significantly higher when tumour size was >38 mm (median tumour size; P=0.006, Mann-Whitney U-test). Peripheral blood mononuclear cell IFNG was suppressed in recurrent CRC (P=0.01). Methylated TNFpromoter (P=0.003) and TNFexon1 (P=0.001) were associated with significant suppression of TNF in tumours. Methylated FOXP3cpg was associated with significant suppression of FOXP3 in both PBMC (P=0.018) and tumours (P=0.010). Reduced PBMC FOXP3 expression was associated with significantly worse overall survival (HR=8.319, P=0.019). CONCLUSIONS: We have detected changes in the expression of immunomodulatory genes that could act as biomarkers for prognosis and future immunotherapeutic strategies

    Risk-stratified faecal immunochemical testing (FIT) for urgent colonoscopy in Lynch syndrome during the COVID-19 pandemic

    Get PDF
    BACKGROUND: Lynch syndrome is a hereditary cancer disease resulting in an increased risk of colorectal cancer. Herein, findings are reported from an emergency clinical service implemented during the COVID-19 pandemic utilizing faecal immunochemical testing ('FIT') in Lynch syndrome patients to prioritize colonoscopy while endoscopy services were limited. METHODS: An emergency service protocol was designed to improve colonoscopic surveillance access throughout the COVID-19 pandemic in England for people with Lynch syndrome when services were extremely restricted (1 March 2020 to 31 March 2021) and promoted by the English National Health Service. Requests for faecal immunochemical testing from participating centres were sent to the National Health Service Bowel Cancer Screening South of England Hub and a faecal immunochemical testing kit, faecal immunochemical testing instructions, paper-based survey, and pre-paid return envelope were sent to patients. Reports with faecal haemoglobin results were returned electronically for clinical action. Risk stratification for colonoscopy was as follows: faecal haemoglobin less than 10 µg of haemoglobin/g of faeces (µg/g)-scheduled within 6-12 weeks; and faecal haemoglobin greater than or equal to 10 µg/g-triaged via an urgent suspected cancer clinical pathway. Primary outcomes of interest included the identification of highest-risk Lynch syndrome patients and determining the impact of faecal immunochemical testing in risk-stratified colonoscopic surveillance. RESULTS: Fifteen centres participated from June 2020 to March 2021. Uptake was 68.8 per cent amongst 558 patients invited. For 339 eligible participants analysed, 279 (82.3 per cent) had faecal haemoglobin less than 10 µg/g and 60 (17.7 per cent) had faecal haemoglobin greater than or equal to 10 µg/g. In the latter group, the diagnostic accuracy of faecal immunochemical testing was 65.9 per cent and escalation to colonoscopy was facilitated (median 49 versus 122 days, χ2 = 0.0003, P < 0.001). CONCLUSION: Faecal immunochemical testing demonstrated clinical value for Lynch syndrome patients requiring colorectal cancer surveillance during the pandemic in this descriptive report of an emergency COVID-19 response service. Further longitudinal investigation on faecal immunochemical testing efficacy in Lynch syndrome is warranted and will be examined under the 'FIT for Lynch' study (ISRCTN15740250)

    The pyramidalis-anterior pubic ligament-adductor longus complex (PLAC) and its role with adductor injuries: a new anatomical concept.

    Get PDF
    PURPOSE: Adductor longus injuries are complex. The conflict between views in the recent literature and various nineteenth-century anatomy books regarding symphyseal and perisymphyseal anatomy can lead to difficulties in MRI interpretation and treatment decisions. The aim of the study is to systematically investigate the pyramidalis muscle and its anatomical connections with adductor longus and rectus abdominis, to elucidate injury patterns occurring with adductor avulsions. METHODS: A layered dissection of the soft tissues of the anterior symphyseal area was performed on seven fresh-frozen male cadavers. The dimensions of the pyramidalis muscle were measured and anatomical connections with adductor longus, rectus abdominis and aponeuroses examined. RESULTS: The pyramidalis is the only abdominal muscle anterior to the pubic bone and was found bilaterally in all specimens. It arises from the pubic crest and anterior pubic ligament and attaches to the linea alba on the medial border. The proximal adductor longus attaches to the pubic crest and anterior pubic ligament. The anterior pubic ligament is also a fascial anchor point connecting the lower anterior abdominal aponeurosis and fascia lata. The rectus abdominis, however, is not attached to the adductor longus; its lateral tendon attaches to the cranial border of the pubis; and its slender internal tendon attaches inferiorly to the symphysis with fascia lata and gracilis. CONCLUSION: The study demonstrates a strong direct connection between the pyramidalis muscle and adductor longus tendon via the anterior pubic ligament, and it introduces the new anatomical concept of the pyramidalis-anterior pubic ligament-adductor longus complex (PLAC). Knowledge of these anatomical relationships should be employed to aid in image interpretation and treatment planning with proximal adductor avulsions. In particular, MRI imaging should be employed for all proximal adductor longus avulsions to assess the integrity of the PLAC

    From Retinal Waves to Activity-Dependent Retinogeniculate Map Development

    Get PDF
    A neural model is described of how spontaneous retinal waves are formed in infant mammals, and how these waves organize activity-dependent development of a topographic map in the lateral geniculate nucleus, with connections from each eye segregated into separate anatomical layers. The model simulates the spontaneous behavior of starburst amacrine cells and retinal ganglion cells during the production of retinal waves during the first few weeks of mammalian postnatal development. It proposes how excitatory and inhibitory mechanisms within individual cells, such as Ca2+-activated K+ channels, and cAMP currents and signaling cascades, can modulate the spatiotemporal dynamics of waves, notably by controlling the after-hyperpolarization currents of starburst amacrine cells. Given the critical role of the geniculate map in the development of visual cortex, these results provide a foundation for analyzing the temporal dynamics whereby the visual cortex itself develops

    Power-Law Inter-Spike Interval Distributions Infer a Conditional Maximization of Entropy in Cortical Neurons

    Get PDF
    The brain is considered to use a relatively small amount of energy for its efficient information processing. Under a severe restriction on the energy consumption, the maximization of mutual information (MMI), which is adequate for designing artificial processing machines, may not suit for the brain. The MMI attempts to send information as accurate as possible and this usually requires a sufficient energy supply for establishing clearly discretized communication bands. Here, we derive an alternative hypothesis for neural code from the neuronal activities recorded juxtacellularly in the sensorimotor cortex of behaving rats. Our hypothesis states that in vivo cortical neurons maximize the entropy of neuronal firing under two constraints, one limiting the energy consumption (as assumed previously) and one restricting the uncertainty in output spike sequences at given firing rate. Thus, the conditional maximization of firing-rate entropy (CMFE) solves a tradeoff between the energy cost and noise in neuronal response. In short, the CMFE sends a rich variety of information through broader communication bands (i.e., widely distributed firing rates) at the cost of accuracy. We demonstrate that the CMFE is reflected in the long-tailed, typically power law, distributions of inter-spike intervals obtained for the majority of recorded neurons. In other words, the power-law tails are more consistent with the CMFE rather than the MMI. Thus, we propose the mathematical principle by which cortical neurons may represent information about synaptic input into their output spike trains

    Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis.

    Get PDF
    Venous abnormalities contribute to the pathophysiology of several neurological conditions. This paper reviews the literature regarding venous abnormalities in multiple sclerosis (MS), leukoaraiosis, and normal-pressure hydrocephalus (NPH). The review is supplemented with hydrodynamic analysis to assess the effects on cerebrospinal fluid (CSF) dynamics and cerebral blood flow (CBF) of venous hypertension in general, and chronic cerebrospinal venous insufficiency (CCSVI) in particular.CCSVI-like venous anomalies seem unlikely to account for reduced CBF in patients with MS, thus other mechanisms must be at work, which increase the hydraulic resistance of the cerebral vascular bed in MS. Similarly, hydrodynamic changes appear to be responsible for reduced CBF in leukoaraiosis. The hydrodynamic properties of the periventricular veins make these vessels particularly vulnerable to ischemia and plaque formation.Venous hypertension in the dural sinuses can alter intracranial compliance. Consequently, venous hypertension may change the CSF dynamics, affecting the intracranial windkessel mechanism. MS and NPH appear to share some similar characteristics, with both conditions exhibiting increased CSF pulsatility in the aqueduct of Sylvius.CCSVI appears to be a real phenomenon associated with MS, which causes venous hypertension in the dural sinuses. However, the role of CCSVI in the pathophysiology of MS remains unclear
    • …
    corecore