25 research outputs found

    Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers

    Get PDF
    Physical systems with co-existence and interplay of processes featuring distinct spatio-temporal scales are found in various research areas ranging from studies of brain activity to astrophysics. The complexity of such systems makes their theoretical and experimental analysis technically and conceptually challenging. Here, we discovered that while radiation of partially mode-locked fibre lasers is stochastic and intermittent on a short time scale, it exhibits non-trivial periodicity and long-scale correlations over slow evolution from one round-trip to another. A new technique for evolution mapping of intensity autocorrelation function has enabled us to reveal a variety of localized spatio-temporal structures and to experimentally study their symbiotic co-existence with stochastic radiation. Real-time characterization of dynamical spatio-temporal regimes of laser operation is set to bring new insights into rich underlying nonlinear physics of practical active- and passive-cavity photonic systems

    Real-time high-resolution heterodyne-based measurements of spectral dynamics in fibre lasers

    Get PDF
    Conventional tools for measurement of laser spectra (e.g. optical spectrum analysers) capture data averaged over a considerable time period. However, the generation spectrum of many laser types may involve spectral dynamics whose relatively fast time scale is determined by their cavity round trip period, calling for instrumentation featuring both high temporal and spectral resolution. Such real-time spectral characterisation becomes particularly challenging if the laser pulses are long, or they have continuous or quasi-continuous wave radiation components. Here we combine optical heterodyning with a technique of spatiooral intensity measurements that allows the characterisation of such complex sources. Fast, round-trip-resolved spectral dynamics of cavity-based systems in real-time are obtained, with temporal resolution of one cavity round trip and frequency resolution defined by its inverse (85 ns and 24 MHz respectively are demonstrated). We also show how under certain conditions for quasi-continuous wave sources, the spectral resolution could be further increased by a factor of 100 by direct extraction of phase information from the heterodyned dynamics or by using double time scales within the spectrogram approach

    Analysis of laser radiation using the Nonlinear Fourier transform

    Get PDF
    Modern high-power lasers exhibit a rich diversity of nonlinear dynamics, often featuring nontrivial co-existence of linear dispersive waves and coherent structures. While the classical Fourier method adequately describes extended dispersive waves, the analysis of time-localised and/or non-stationary signals call for more nuanced approaches. Yet, mathematical methods that can be used for simultaneous characterisation of localized and extended fields are not yet well developed. Here, we demonstrate how the Nonlinear Fourier transform (NFT) based on the Zakharov-Shabat spectral problem can be applied as a signal processing tool for representation and analysis of coherent structures embedded into dispersive radiation. We use full-field, real-time experimental measurements of mode-locked pulses to compute the nonlinear pulse spectra. For the classification of lasing regimes, we present the concept of eigenvalue probability distributions. We present two field normalisation approaches, and show the NFT can yield an effective model of the laser radiation under appropriate signal normalisation conditions

    Integration of silicon core fibres to single mode fibres using nanospike with improved coupling efficiency

    No full text
    We integrate small core tapered polysilicon core fibres with standard single mode fibresvia a Nanospike for efficient coupling. Both optical characterization experiment and simulation areinvestigated. This work provides a practical way for semiconductor fibre integration withconventional fibre system

    Interfacing telecom fibers and silicon core fibers with nano-spikes for in-fiber silicon devices

    No full text
    We report fabrication of tapered silicon core fibers with nano-spikes enabling efficient optical coupling into the core, as well as their seamless integration with single mode fibers. A proof-of-concept integrated in-fiber silicon device is demonstrated

    Областная газета. 2001. № 240. Новая Эра. № 48

    No full text
    Reported here is the fabrication of tapered silicon core fibers possessing a nano-spike input that facilitates their seamless splicing to conventional single mode fibers. A proof-of-concept 30 µm cladding diameter fiber device is demonstrated with nano-spike coupling and propagation losses below 4 dB and 2 dB/cm, respectively. Finite-element-method-based simulations show that the nano-spike coupling losses could be reduced to below 1 dB by decreasing the cladding diameters down to 10 µm. Such efficient and robust integration of the silicon core fibers with standard fiber devices will help to overcome significant barriers for all-fiber nonlinear photonics and optoelectronics

    Wavelength Conversion and Supercontinuum Generation in Silicon Optical Fibers

    No full text
    This paper describes the state of the art in wavelength conversion and supercontinuum generation using glass-clad silicon core optical fibers. Such semiconductor fibers have enjoyed considerable attention due to their intrinsically high third-order nonlinearities, which are markedly higher than in conventional infrared glasses. Results to date from small core silicon fibers fabricated using both the high-pressure chemical vapor deposition technique and the molten core drawing method are presented. Also discussed are directions for continued study and development, including engineering the dispersion and nonlinear properties as well as improved interconnection

    Octave-spanning supercontinuum generation in a dispersion managed tapered crystalline silicon core fiber

    No full text
    We demonstrate octave spanning supercontinuum from 1.35 μm to 3 μm generated in a tapered crystalline silicon core fiber pumped at 2.4 μm using a femtosecond OPO
    corecore