243 research outputs found

    An overview of DNA methylation-derived trait score methods and applications

    Get PDF
    This is the final version. Available on open access from BMC via the DOI in this recordMicroarray technology has been used to measure genome-wide DNA methylation in thousands of individuals. These studies typically test the associations between individual DNA methylation sites ("probes") and complex traits or diseases. The results can be used to generate methylation profile scores (MPS) to predict outcomes in independent data sets. Although there are many parallels between MPS and polygenic (risk) scores (PGS), there are key differences. Here, we review motivations, methods, and applications of DNA methylation-based trait prediction, with a focus on common diseases. We contrast MPS with PGS, highlighting where assumptions made in genetic modeling may not hold in epigenetic data.University of Queensland/University of Exeter (QUEX)National Health and Medical Research CouncilWellcome Trus

    Author Correction: Bayesian reassessment of the epigenetic architecture of complex traits

    Get PDF
    The original version of this Article contains an error in Fig. 3 in which panel B was inadvertently duplicated from panel A. This has been corrected in both the PDF and HTML versions of the Article

    Parent of origin genetic effects on methylation in humans are common and influence complex trait variation

    Get PDF
    Parent-of-origin effects (POE) are observed when there are different effects from alleles inherited from the two parents on phenotypic measures. Here, Zeng et al. study POE on DNA methylation in 5,101 individuals and identify genetic variants that associate with methylation variation via POE and their potential phenotypic consequences

    Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1

    Get PDF
    Background: Amyotrophic lateral sclerosis (ALS) is a complex, late-onset, neurodegenerative disease with a genetic contribution to disease liability. Genome-wide association studies (GWAS) have identified ten risk loci to date, including the TNIP1/GPX3 locus on chromosome five. Given association analysis data alone cannot determine the most plausible risk gene for this locus, we undertook a comprehensive suite of in silico, in vivo and in vitro studies to address this. // Methods: The Functional Mapping and Annotation (FUMA) pipeline and five tools (conditional and joint analysis (GCTA-COJO), Stratified Linkage Disequilibrium Score Regression (S-LDSC), Polygenic Priority Scoring (PoPS), Summary-based Mendelian Randomisation (SMR-HEIDI) and transcriptome-wide association study (TWAS) analyses) were used to perform bioinformatic integration of GWAS data (Ncases = 20,806, Ncontrols = 59,804) with β€˜omics reference datasets including the blood (eQTLgen consortium N = 31,684) and brain (N = 2581). This was followed up by specific expression studies in ALS case-control cohorts (microarray Ntotal = 942, protein Ntotal = 300) and gene knockdown (KD) studies of human neuronal iPSC cells and zebrafish-morpholinos (MO). // Results: SMR analyses implicated both TNIP1 and GPX3 (p < 1.15 Γ— 10βˆ’6), but there was no simple SNP/expression relationship. Integrating multiple datasets using PoPS supported GPX3 but not TNIP1. In vivo expression analyses from blood in ALS cases identified that lower GPX3 expression correlated with a more progressed disease (ALS functional rating score, p = 5.5 Γ— 10βˆ’3, adjusted R2 = 0.042, Beffect = 27.4 Β± 13.3 ng/ml/ALSFRS unit) with microarray and protein data suggesting lower expression with risk allele (recessive model p = 0.06, p = 0.02 respectively). Validation in vivo indicated gpx3 KD caused significant motor deficits in zebrafish-MO (mean difference vs. control Β± 95% CI, vs. control, swim distance = 112 Β± 28 mm, time = 1.29 Β± 0.59 s, speed = 32.0 Β± 2.53 mm/s, respectively, p for all < 0.0001), which were rescued with gpx3 expression, with no phenotype identified with tnip1 KD or gpx3 overexpression. // Conclusions: These results support GPX3 as a lead ALS risk gene in this locus, with more data needed to confirm/reject a role for TNIP1. This has implications for understanding disease mechanisms (GPX3 acts in the same pathway as SOD1, a well-established ALS-associated gene) and identifying new therapeutic approaches. Few previous examples of in-depth investigations of risk loci in ALS exist and a similar approach could be applied to investigate future expected GWAS findings

    Brain Potentials Highlight Stronger Implicit Food Memory for Taste than Health and Context Associations

    Get PDF
    Increasingly consumption of healthy foods is advised to improve population health. Reasons people give for choosing one food over another suggest that non-sensory features like health aspects are appreciated as of lower importance than taste. However, many food choices are made in the absence of the actual perception of a food's sensory properties, and therefore highly rely on previous experiences of similar consumptions stored in memory. In this study we assessed the differential strength of food associations implicitly stored in memory, using an associative priming paradigm. Participants (N = 30) were exposed to a forced-choice picture-categorization task, in which the food or non-food target images were primed with either non-sensory or sensory related words. We observed a smaller N400 amplitude at the parietal electrodes when categorizing food as compared to non-food images. While this effect was enhanced by the presentation of a food-related word prime during food trials, the primes had no effect in the non-food trials. More specifically, we found that sensory associations are stronger implicitly represented in memory as compared to non-sensory associations. Thus, this study highlights the neuronal mechanisms underlying previous observations that sensory associations are important features of food memory, and therefore a primary motive in food choice.</p

    Accuracy of Predicting the Genetic Risk of Disease Using a Genome-Wide Approach

    Get PDF
    Background - The prediction of the genetic disease risk of an individual is a powerful public health tool. While predicting risk has been successful in diseases which follow simple Mendelian inheritance, it has proven challenging in complex diseases for which a large number of loci contribute to the genetic variance. The large numbers of single nucleotide polymorphisms now available provide new opportunities for predicting genetic risk of complex diseases with high accuracy. Methodology/Principal Findings - We have derived simple deterministic formulae to predict the accuracy of predicted genetic risk from population or case control studies using a genome-wide approach and assuming a dichotomous disease phenotype with an underlying continuous liability. We show that the prediction equations are special cases of the more general problem of predicting the accuracy of estimates of genetic values of a continuous phenotype. Our predictive equations are responsive to all parameters that affect accuracy and they are independent of allele frequency and effect distributions. Deterministic prediction errors when tested by simulation were generally small. The common link among the expressions for accuracy is that they are best summarized as the product of the ratio of number of phenotypic records per number of risk loci and the observed heritability. Conclusions/Significance - This study advances the understanding of the relative power of case control and population studies of disease. The predictions represent an upper bound of accuracy which may be achievable with improved effect estimation methods. The formulae derived will help researchers determine an appropriate sample size to attain a certain accuracy when predicting genetic ris

    Predicting Landscape-Genetic Consequences of Habitat Loss, Fragmentation and Mobility for Multiple Species of Woodland Birds

    Get PDF
    Inference concerning the impact of habitat fragmentation on dispersal and gene flow is a key theme in landscape genetics. Recently, the ability of established approaches to identify reliably the differential effects of landscape structure (e.g. land-cover composition, remnant vegetation configuration and extent) on the mobility of organisms has been questioned. More explicit methods of predicting and testing for such effects must move beyond post hoc explanations for single landscapes and species. Here, we document a process for making a priori predictions, using existing spatial and ecological data and expert opinion, of the effects of landscape structure on genetic structure of multiple species across replicated landscape blocks. We compare the results of two common methods for estimating the influence of landscape structure on effective distance: least-cost path analysis and isolation-by-resistance. We present a series of alternative models of genetic connectivity in the study area, represented by different landscape resistance surfaces for calculating effective distance, and identify appropriate null models. The process is applied to ten species of sympatric woodland-dependant birds. For each species, we rank a priori the expectation of fit of genetic response to the models according to the expected response of birds to loss of structural connectivity and landscape-scale tree-cover. These rankings (our hypotheses) are presented for testing with empirical genetic data in a subsequent contribution. We propose that this replicated landscape, multi-species approach offers a robust method for identifying the likely effects of landscape fragmentation on dispersal

    Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood

    Get PDF
    Understanding the difference in genetic regulation of gene expression between brain and blood is important for discovering genes for brain-related traits and disorders. Here, we estimate the correlation of genetic effects at the top-associated cis-expression or -DNA methylation (DNAm) quantitative trait loci (cis-eQTLs or cis-mQTLs) between brain and blood (r(b)). Using publicly available data, we find that genetic effects at the top cis-eQTLs or mQTLs are highly correlated between independent brain and blood samples ((r) over cap (b) = 0.70 for ciseQTLs and (r) over cap (b) = 0.78 for cis-mQTLs). Using meta-analyzed brain cis-eQTL/mQTL data (n = 526 to 1194), we identify 61 genes and 167 DNAm sites associated with four brain-related phenotypes, most of which are a subset of the discoveries (97 genes and 295 DNAm sites) using data from blood with larger sample sizes (n = 1980 to 14,115). Our results demonstrate the gain of power in gene discovery for brain-related phenotypes using blood cis-eQTL/mQTL data with large sample sizes
    • …
    corecore